1. Find the derivative: $\frac{d}{d t} B_{5}^{7}(t)$.
a) $7\left(B_{4}^{6}(t)-B_{5}^{6}(t)\right)$
b) $8\left(B_{3}^{6}(t)+B_{4}^{6}(t)\right)$
c) $7\left(B_{4}^{6}(t)-B_{3}^{6}(t)\right)$
d) $7\left(B_{3}^{6}(t)-B_{4}^{6}(t)\right)$
e) $8\left(B_{4}^{6}(t)-B_{3}^{6}(t)\right)$

Correct Answer: $7\left(B_{4}^{6}(t)-B_{5}^{6}(t)\right)$
2. Choose a correct equivalent expression for $B_{2}^{5}(t)$:
a) $\frac{d}{d t} \frac{1}{6} C_{2}^{6}(t)$
b) $B_{1}^{4}(t)+B_{2}^{4}(t)$
c) $(1-t) B_{3}^{5}(t)+t B_{4}^{5}(t)$
d) $t B_{1}^{4}(t)+(1-t) B_{2}^{4}(t)$
e) $\frac{d}{d t} 6\left(B_{3}^{6}(t)-B_{4}^{6}(t)\right)$

Correct Answer: $\quad t B_{1}^{4}(t)+(1-t) B_{2}^{4}(t)$
3. If a Newton form $p(t)=2+3(t-1)-4(t-1)(t-2)$ matches a data function $g(t)$ at $t=1, t=2$, and $t=3$, what is $[1,2,3] g$?
a) 3
b) -3
c) -4
d) 4
e) 2

Correct Answer: - 4
4. Same $p(t)$ and $g(t)$ as in the previous question. What is $[1,2] g$?
a) 3
b) -3
c) 3
d) 2
e) 4

Correct Answer: 3
5. Use a simple observation (about the graph) to find the interpolating polynomial in P_{2} that passes through the points $(-1,2),(3,0)$, and $(5,-1)$. In the standard basis, with $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$, what is the coefficient a_{1} ?
a) -1
b) $-\frac{1}{2}$
c) $\frac{1}{2}$
d) 1
e) 0

Correct Answer: $-\frac{1}{2}$
6. To show the existence and uniqueness of the interpolating polynomial $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots a_{d} t^{d}$, for a data sequence t_{0}, \ldots, t_{d}, and data function $g(t)$, with y-values $y_{i}=g\left(t_{i}\right)$, using the standard basis, we used a linear system $A \mathbf{x}=\mathbf{b}$. The appropriate entries of the column vector \mathbf{x} are:
a) a_{0}, \ldots, a_{d}
b) t_{0}, \ldots, t_{d}
c) y_{0}, \ldots, y_{d}
d) $y_{0}-t_{0}, \ldots, y_{d}-t_{d}$
e) $\frac{a_{1}-a_{0}}{t_{1}-t_{0}}, \ldots, \frac{a_{d}-a_{d-1}}{t_{d}-t_{d-1}}$

Correct Answer: a_{0}, \ldots, a_{d}
7. Same $A \mathbf{x}=\mathbf{b}$ as in the previous question. The existence and uniqueness of $p(t)$ follows from:
a) $\operatorname{det}(A) \neq 0$
b) $\operatorname{det}(A)=0$
c) $g\left(t_{i}\right)=0, i=0, \ldots, d$
d) $g\left(t_{i}\right) \neq 0, i=0, \ldots, d$
e) $t_{i} \neq 0$,
$i=0, \ldots, d$

Correct Answer: $\operatorname{det}(A) \neq 0$
8. Below is an interpolating polynomial written with Lagrange polynomials, that passes through the points: $(1,2)$, $(2,4),(4,1)$. Find the correct value of the missing constant C :

$$
(2) \frac{(t-2)(t-4)}{(1-2)(1-4)}+(4) \frac{(t-1)(t-4)}{(2-1)(2-4)}+(1) \frac{(t-1)(t-2)}{C}
$$

a) -2
b) -6
c) 2
d) 6
e) 3

Correct Answer: 6
9. The polynomial $p(x)=\left|\begin{array}{ccc}1 & x & x^{2} \\ 1 & 3 & 9 \\ 1 & 5 & 25\end{array}\right|$ has zeros at x equal to:
a) 3 and 2
b) 1 and 3
c) 1 and 5
d) 3 and 9
e) 3 and 5

Correct Answer: 3 and 5
10. Same $p(x)$ as in the previous question. The leading coefficient of $p(x)$ is:
a) 4
b) 5
c) 1
d) 2
e) 3

Correct Answer: 2

