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47. Consider the system

x1y: — 2xy; = 1

(a) Near which points of R* can we solve for r, 8, and
z in terms of the Cartesian coordinates?

(b) Explain the geometry behind your answer in

X1y + 02y — dypys = —9. AArEL

X2V +3x1y§ =12

49. Recall that the equations relating spherical and Carte-

(a) Show that, near the point (xi, x2, y1, ¥2, y3) = sian coordinates in R? are

(1,0, -1, 1, 2), it is possible to solve for y;, ya,

¥3 in terms of x|, x;.

(b) From the result of part (a), we may consider yy, s,

X = psingcosf

y = psingsing.

¥3 to be functions of x; and x;. Use implicit differ- Z=pcosg

i ; dy
entiation and the chain rule to evaluate a—il(l ,0), (a) Near which points of R* can we solve for p, ¢, and
1

dyz

a3
—=(1,0), and —(1, 0).
Bxl( ), an axl( )

¢ in terms of x, y, and z?

(b) Describe the geometry behind your answer in
part (a).

48. Consider the equations that relate cylindrical and

Cartesian coordinates in R*:

X =rcosf
y =rsinf.
=1z

P ———

b
<

—F

Figure 2.75 The tangent line to

y = f(x)at (xg, f(xp)) crosses the
x-axis at x = xj.

2.7 Newton’s Method (optional)

When you studied single-variable calculus, you may have learned a method, known
as Newton’s method (or the Newton—Raphson method), for approximating the
solution to an equation of the form f(x) = 0, where f: X € R — R s a differ-
entiable function. Here’s a reminder of how the method works.

We wish to find a number r such that f(r) = 0. To approximate r, we make
an initial guess x, for r and, in general, we expect to find that f(x) # 0. So next
we look at the tangent line to the graph of f at (xo, f(xo)). (See Figure 2.75.)
Since the tangent line approximates the graph of f near (xg, f(xp)), we can
find where the tangent line crosses the x-axis. The crossing point (x, 0) will
generally be closer to (r, 0) than (xo, 0) is, so we take x, as a revised and improved
approximation to the root r of f(x) = 0.

To find x;, we begin with the equation of the tangent line

y = fxo) + f'(xo)(x — xo),

then set y = 0 to find where this line crosses the x-axis. Thus, we solve the equation

f(x0) + f'(xo)(x1 — x0) =0
for x; to find that

X1 = Xg —

Once we have x;, we can start the process again using x; in place of xo and
produce what we hope will be an even better approximation x; via the formula

PO fx)
J'(x)
Indeed, we may iterate this process and define x; recursively by
Fxe-1)
Xf = K] o ——————"— =1,2,... (1)
' f'xe1)

and thereby produce a sequence of numbers xg, x1, ..., Xk, . ...
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It is not always the case that the sequence {x;} converges. However, when
it does, it must converge to a root of the equation f(x) = 0. To see this, let

L = limj_, o x;. Then we also have lim;_, o, x;_; = L. Taking limits in formula
(1), we find
L
)
JF'(L)

which immediately implies that (L) = 0. Hence, L is a root of the equation.

Now that we have some understanding of derivatives in the multivariable
case, we turn to the generalization of Newton’s method for solving systems of n
equations in n unknowns. We may write such a system as

B 005 Bo)i=10
f(-x a'-'sxr1)=0
el : : (2)
f_;;(.Xh...,x,.,):O

We consider the map f: X € R" — R” defined as f(x) = (fi(x), ..., fu(x)) (ie.,
f is the map whose component functions come from the equations in (2). The
domain X of f may be taken to be the set where all the component functions are
defined.) Then to solve system (2) means to find a vector r = (rq, ..., r,) such
that f(r) = 0. To approximate such a vector r, we may, as in the single-variable
case, make an initial guess x for what r might be. If f is differentiable, then we
know that y = f(x) is approximated by the equation

y = f(xo) + Df(x0)(x — Xo).

(Here we think of f(x¢) and the vectors x and X, as n x 1 matrices.) Then we set
y equal to 0 to find where this approximating function is zero. Thus, we solve the
matrix equation

f(x0) + Df(x0)(x; — %) = 0 3)
for x; to give a revised approximation to the root r. Evidently (3) is equivalent to
Df(xo)(x; — x0) = —1(xq). (4)

To continue our argument, suppose that Df(x) is an invertible n x n matrix,
meaning that there is a second n x n matrix [Df(x()]~! with the property that
[Df(x0)] ' Df(x) = Df(xo)[ Df(x0)] ! = I, the n x n identity matrix. (See Ex-
ercises 20 and 30-38 in §1.6.) Then we may multiply equation (4) on the left by
[ Df(x0)]”" to obtain

I,(x — Xo) = —[Df(x0)] ' f(x0).
Since I, A = A for any n x k matrix A, this last equation implies that
X = Xo — [Df(x0)]”'f(xo). ©)

As we did in the one-variable case of Newton’s method, we may iterate formula
(5) to define recursively a sequence {x;} of vectors by

X = X1 — [DExe— )]~ H(xe—1) (6)
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-3+

Figure 2.76 Finding
the intersection
points of the circle
x4+ y*=4and

the hyperbola

4x? — y2 = 4in
Example 1.

Note the similarity between formulas (1) and (6). Moreover, just as in the case
of formula (1), although the sequence {x¢, Xy, ..., Xy, ...} may not converge, if
it does, it must converge to a root of f(x) = 0. (See Exercise 4.)

EXAMPLE 1 Consider the problem of finding the intersection points of the cir-
clex? + y? = 4 and the hyperbola 4x? — y? = 4. (See Figure 2.76.) Analytically,
we seek simultaneous solutions to the two equations

x2+y2=4 and 4x2—y2=4,

or, equivalently, solutions to the system
2 .2
x4y —4=0
A - ™
4x° —y* -4 =0

To use Newton’s method, we define a function f: R> — R? by f(x, y) = (x2 +
y? —4,4x2 — y2 — 4) and try to approximate solutions to the vector equation
f(x, y) = (0, 0). We may begin with any initial guess, say,

X0 1
XXn = s 5
’ [yo] H
and then produce successive approximations Xx;, X, ... to a solution using for-
mula (6). In particular, we have

2% 2y
Di(x, y) = [ 8x —2y ]

Note that det Df(x, y) = —20xy. You may verify (see Exercise 36 in §1.6) that

1 1
1 { -2y =2y :| 10x  10x

—1 3 e
L R —20xy | —8x 2x

& 2 1
S5y 10y

Thus,

{x*] o | ML) 2 [DfCx—1, ye—1)] 001, yie1)

Yk | Ve—1 |
- 1
=] 10x¢—1  10x;4 Xpy + v —4
L V-1 ] 2 1 x| — ye, — 4
L Syk—1 10y,
" S5x?_, —8 5x}_, — 8
_ [xk—l] _ 10x;_4 AL et 10x
Vi1 5yii — 12 it e Dt — 13
ol TP = W
L 10y, ] 10y,—;
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Beginning with xg = yg = 1, we have

5:1%2 =% 5:- 12 ~12
=i =13 =l-—" =17
& 10-1 4 10-1
5(1.3*— 8 5(1.7%— 12
gy 13— 2B =8 oceags g A 12
10(1.3) 10(1.7)
= 1.555882, etc.

It is also easy to hand off the details of the computation to a calculator or a
computer. One finds the following results:

k X Yk l
0 ] 1 i
1 1.3 ik

2 | 1.26538462 | 1.55588235
3 | 1.26491115 | 1.54920772 |
4 | 1.26491106 | 1.54919334 |
5 | 1.26491106 | 1.54919334 J'

Thus, it appears that, to eight decimal places, an intersection point of the curves
is (1.26491106, 1.54919334).

In this particular example, it is not difficult to find the solutions to (7) exactly.
We add the two equations in (7) to obtain

x2

S =Bl = 8

Thus, x = £4/8/5. If we substitute these values for x into the first equation of
(7), we obtain

$4y'—4=0 & y=L

Hence, y = +.,/12/3. Therefore, the four intersection points are

(3 (5 08) (£7) (5-7)

Since /8/5 A2 1.264911064 and ,/12/5 ~ 1.54919334, we see that Newton’s

method provided us with an accurate approximate solution very quickly. *
EXAMPLE 2 We use Newton’s method to find solutions to the system
3 2
X —=5x"4+2x—y+4+13=0
(®)

B4+t —14x—-y—-19=0"

|

Asinthe previous example, we define f: R? — R?byf(x, y) = (x> — 5x% + 2x —
y 413, x% + x> — 14x — y — 19). Then

—1
—1

322 -10x +2

Df(x’y)=[3x2+2x—l4
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so that det Df(x, y) = 12x — 16 and

1 1
C12x — 16 12x — 16
Df(x, y)]' =
[B10: )] “3x2—2x+14  —3x2— 10x 42
12x — 16 12x — 16
Thus, formula (6) becomes
1 1
X | Xk—1 12xk,| — 16 ]2xk_1 — 16
Y| [ e —3xf_l —2x3- + 14 k3x,f_1 — 10x3_, + 2
12xk_1 — 16 12xk_1 — 16
xp_y = 5x2, +2x 1 — Y1 + 13
x
x;?_l +xf_] = 141&,1 == ,Vk—l — 19
GX}%_] = 16xk_1 —32
B -l 12521 — 16
3xf:7] — 16):,?_l — 14.76,-3’_1 + 82x4—1 — 8yk—1 + Oxp—_1yk—1 + 72
Ye—1 —
6xk_1 — 8

This is the formula we iterate to obtain approximate solutions to (8).
If we begin with xg = (xg, yo) = (8, 10), then the successive approximations
x; quickly converge to (4, 5), as demonstrated in the table below.

X Yk
8 10
5.2 —08.2

4.1862009 | —2.7412414
4.00607686 = 4.82161865
4.00000691 | 4.99981073
4.00000000 | 5.00000000
| 4.00000000 | 5.00000000 |

DU RWR -S|

If we begin instead with xo = (50, 60), then convergence is, as you might predict,
somewhat slower (although still quite rapid):

X Yk

50 60

25.739726 | —57257.438
13.682211 | —7080.8238
7.79569757 | —846.58548
5.11470969 | —86.660453
| 4.1643023 | —1.6486813
4.00476785 | 4.86119425
4.00000425 | 4.99988349
4.00000000 | 5.00000000

{ 4.00000000 | 5.00000000 |

D0 D BN = O >:~|
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On the other hand, if we begin with xy = (-2, 12), then the sequence of points
generated converges to a different solution, namely, (—4/3, —25/27):

I T S ™) ==

\ X Yk

-2 12

—1.4 [ 1.4
—1.3341463 | —0.903122
| —1.3333335 | —0.9259225
—1.3333333 | —0.9259259
—1.3333333 | —0.9259259

In fact, when a system of equations has multiple solutions, it is not always
easy to predict to which solution a given starting vector xo will converge under
Newton’s method (if, indeed, there is convergence at all). *

Finally, we make two remarks. First, if at any stage of the iteration process the
matrix Df(x;) fails to be invertible (i.e., [Df(x;)]~! does not exist), then formula
(6) cannot be used. One way to salvage the situation is to make a different choice
of initial vector X, in the hope that the sequence {x;} that it generates will not
involve any noninvertible matrices. Second, we note that if, at any stage, x; is
exactly aroot of f(x) = 0, then formula (6) will not change it. (See Exercise 7).

2.7 Exercises

6 1. Use Newton’s method with initial vector xg = (1, —1)

to approximate the real solution to the system

)726'1' =3
2ye* +10y* =0

2. In this problem, you will use Newton’s method to
estimate the locations of the points of intersection
of the ellipses having equations 3x? 4+ y? = 7 and
X 4+4y?=38.

(a) Graphthe ellipses and use your graphto give a very
rough estimate (xg, yo) of the point of intersection
that lies in the first quadrant.

(b) Denote the exact point of intersection in the first
quadrant by (X, ¥). Without solving, argue that
the other points of intersection must be (—X, Y),
(X,-Y),and (X, =Y).

0 (c) Now use Newton’s method with your estimate
(x0, yo) in part (a) to approximate the first quadrant
intersection point (X, ¥).

(d) Solve for the intersection points exactly, and com-
pare your answer with your approximations.

3. This problem concerns the determination of the points
of intersection of the two curves with equations x? —
4y’ = 1 and x? + 4y2 = 2.

0 (a) Graph the curves and use your graph to give rough
estimates for the points of intersection.

0 (b) Now use Newton’s method with different initial
estimates to approximate the intersection points.

4. Consider the sequence of vectors xg, X1, ..., where,
for k = 1, the vector x; is defined by the Newton’s
method recursion formula (6) given an initial “guess”
Xg at a root of the equation f(x) = 0. (Here we as-
sume that f: X € R" — R" is a differentiable func-
tion.) By imitating the argument in the single-variable
case, show that if the sequence {x; } converges to a vec-
tor L and Df(L) is an invertible matrix, then L must
satisfy f(L) = 0.

5. This problem concerns the Newton’s method iteration
in Example 1.

0 (a) Use initial vector xq = (—1, 1) and calculate the
successive approximations X, X,, X3, etc. To what
solution of the system of equations (7) do the ap-
proximations converge?

0 (b) Repeat part (a) with xo = (1, —1). Repeat again
with xg = (=1, —1).
(c) Comment on the results of parts (a) and (b) and

whether you might have predicted them. Describe
the results in terms of Figure 2.76.
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8. Suppose that f: X € R? — R? is differentiable and
that we write f(x, y) = (f(x, y), g(x, ¥)). Show that
formula (6) implies that, fork > 1,

J =15 Ye—1)8y(Xe—1, Ye—1) — 8(Xk—15 Ye—1) fy (=1, Ye—1)
T (=15 Ye—1)8y (X1, Ye=1) — fy(Xr—1, Ye—1)8x(r—1, Yk-1)

Xp = Xg—1 —

8(xk—1y Ye—1) fr(i—1, Ye1) — fXr—1. Yem1)8x(Xk=1, Yi—1)

Yk = Yk—1

6. Consider the Newton’s method iteration in Example 2.

G (a) Use initial vector xyp = (1.4, 10) and calculate the
successive approximations x;, X», X3, etc. To what
solution of the system of equations (8) do the ap-
proximations converge?

0 (b) Repeat part (a) with xo = (1.3, 10).

(¢) In Example 2 we saw that (4, 5) was a solution of
the given system of equations. Is (1.3, 10) closer to
(4, 5) or to the limiting point of the sequence you
calculated in part (b)?

(d) Comment on your observations in part (c). What
do these observations suggest about how easily you
can use the initial vector xq to predict the value of
limy, o X (assuming that the limit exists)?

7. Suppose that at some stage in the Newton’s method it-
eration using formula (6), we obtain a vector x; that is
an exact solution to the system of equations (2). Show
that all the subsequent vectors Xy, X2, . . . are equal
to x;. Hence, if we happen to obtain an exact root via
Newton’s method, we will retain it.

" Pl Yi—1)8y (X1, Ye=1) — Fy(Xk—1, Yk—1)8x(Xk—1, Yem1)

0 9. Aswe will see in Chapter 4, when looking for maxima

and minima of a differentiable function F: X C R" —
R, we need to find the points where D F(xy, ..., x,) =
[0 --- 0], called critical points of F. Let F(x, y) =
4sin(xy) + x> + 3. Use Newton’s method to approx-
imate the critical point that lies near (x, y) = (-1, —1).

10. Consider the problem of finding the intersection points
of the sphere x? + y? 4 72 = 4, the circular cylinder
x? + y? = 1, and the elliptical cylinder 4y? + 72 = 4.
0 (a) Use Newton’s method to find one of the intersec-
tion points. By choosing a different initial vector
Xo = (xo, Yo, 20), approximate a second intersec-
tion point. (Note: You may wish to use a computer
algebra system to determine appropriate inverse

matrices.)

(b) Find all the intersection points exactly by means of
algebra and compare with your results in part (a).

True/False Exercises for Chapter 2

1. The component functions of a vector-valued function 8. The graph of any function of two variables is a level set of
are vectors. a function of three variables.
2. The domain of f(x, y) = (xz Y41, 3 ! X th 9. The level §et of any fungtion of three variables is the graph
x+y vy of a function of two variables.
{(r, ) eR? | y # 0, x # y). : x? —2y?
10. lim —5 =
3y . )00 x? 4y
3. The range of f(x, y) = (x2 N , —) is . o
=ty Mt (0, 0)
{, v, w) e R |u > 1. M I y)={xZgyz nENFEOO g 4
4. The function f: R® — {(0, 0, 0)} — R?, f(x) = 2x/||]| . 2 When(n )= (B,.0)
3 continuous.
is one-one.
. : 12. If f(x,y) approaches a number L as (x,y)— (a,b)
5. Th h of x = 9y? + z2/4 boloid. T .
Eigraph al = Sy /4 18 @pacibol ol along all lines through (a, b), then limgy, vy (a.0) (x5 )
6. The graph of z + x? = y? is a hyperboloid. =L
7. The level set of a function f(x, v, z) is either empty 13, If lim,_,, f(x) exists and is finite, then f is continuous

or a surface.

ata.



14.

15.
16.

17.

18.

19.

20.

21.

22,

23.

fx.b) - fa. b)

fe(a, b) = lim
x—a x—a
If f(x,y,z) =siny, then V f(x, y,z) = cos y.

If : R® — R? is differentiable, then Df(x) is a3 x 4
matrix.

If f is differentiable at a, then f is continuous at a.
If f is continuous at a, then f is differentiable at a.

If all partial derivatives 8f/dxy, ..., 3f/dx, of a func-
tion f(xy,...,x,)existata = (ay,...,a,), then f is
differentiable at a.

Iff:R* — R’ and g: R* — R’ are both differentiable
ata € R, then D(f — g)(a) = Df(a) — Dg(a).

There’s a function f of class C? such that

a a
—f =y —2x and—f =y — 3xy°.
ax ay

If the second-order partial derivatives of f exist at
(a, b), then f,(a, b) = fy.(a,b).

If w= F(x, y,z)and z = g(x, y) where F and g are
differentiable, then

aF OF g

T 8x bz ox

24,

25.

26.

27.

28.

29.

30.

Miscellaneous Exercises for Chapter 2
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The tangent plane to z = x3/(y 4 1) at the point
(—2, 0, —8) has equation z = 12x + 8y + 16.

The plane tangent to xy/z> = 1 at(2, 8, —4) has equa-
tiondx + v + 2z = 8.

The plane tangent to the surface x2 + xye* + y° =
1 at the point (2, —1,0) is parallel to the vector
3i45j -3k

d
Dy f (%, y,2) = 5{-

af
dz
If f(x,y)=sinxcosy and v is a unit vector in RZ,

T oy 2
then 0 < D (—,—)<—.
nb=Dfl7:3)=3

If v is a unit vector in R® and f(x, y,z) = sinx —
cos y + sin z, then

Dﬁkf(}f, ¥, Z) —=

-3 < Dyf(x,y,2) < 3.

. Letf(x) = (i + k) x x.

(a) Write the component functions of f.
(b) Describe the domain and range of f.

Let g(x, y) = \/Z
)’

(a) Determine the domain and range of g.
(b) Is the domain of g open or closed? Why?

. Figure 2.77 shows the graphs of six functions f(x, y)

and plots of the collections of their level curves in some

‘ S Gra h rLeivérl c;u;ves
- Let f(x) = proj; o, X, where x = xi+ yj + zk. ' Function (uppe:::ase (lowercase
(a) Describe the domain and range of f. } f (x_ ’ )') -  letten) letter_)“
¢ : .
(b) Write the component functions of f | Fog = —
| f@x,y) =siny/x2 + 2
- Let flx, y) = /37 | @) = By - 2xD)e
(a) Find the domain and range of f. fx,y) =y —3x%y
(b) Is the domain of f open or closed? Why? fx.y)= xz),zf -xj—zf
flx,y)=ye 77

order. Complete the following table by matching each
function in the table with its graph and plot of its level
curves.

6. Consider the function f(x, y) = 2 + In(x2 + y?).

(a) Sketch some level curves of f. Give at least those
at heights, 0, 1, and 2. (It will probably help if you
give a few more.)

(b) Using part (a) or otherwise, give a rough sketch of
the graph of z = f(x, ¥).
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Figure 2.77 Figures for Exercise 5.

7. Use polar coordinates to evaluate

g
@y)=00) x24+y2 "

8. This problem concerns the function

2xy s
o if (x, y) # (0, 0)

0  if(x,y)=(0,0)

fl,y)=

(a) Use polar coordinates to describe this function.

(b) Using the polar coordinate description obtained in
part (a), give some level curves for this function.

(c) Prepare a rough sketch of the graph of f.
(d) Determine lim yy- 0,0y f(x, ¥), if it exists.
(e) Is f continuous? Why or why not?

9. Let

10.

xy(xy +x%)
x4yt
0 if (x, ¥) =(0,0)

if
Pl )= if (x, y) # (0, 0)_

Show that the function g(x) = F(x, 0) is continuous at
x = 0. Show that the function h(y) = F(0, y) is con-
tinuous at y = 0. However, show that F fails to be
continuous at (0, 0). (Thus, continuity in each variable
separately does not necessarily imply continuity of the
function.)

Suppose f:U € R" — R is not defined at a point
a € R” but is defined for all x near a. In other words,
the domain U of f includes, for some r > 0, the set
B, ={x e R"|0 < [x—a| <r}. (The set B, is just
an open ball of radius r centered at a with the point



a deleted.) Then we say limy_,, f(x) = +o0 if f(x)

grows without bound as x — a. More precisely, this

means that given any N > 0 (no matter how large),

there is some 8 > 0 such thatif 0 < ||x — a|| < § (i.e.,

ifx € B,), then f(a) > N.

(a) Using intuitive arguments or the preceding tech-
nical definition, explain why lim,_,¢ 1/x? = oc.

(b) Explain why

2
lim =
(. )=(1.3) (x — 12 + (y — 3)?

(c) Formulate a definition of what it means to say that
lim f(x) = —oo0.
(d) Explain why

I 1—x
im
(x,9)-(0,0) xy4 — y* + x3 — x2

= —0Q.

Exercises 11-17 involve the notion of windchill temperature—
see Example 7 in §2.1, and refer to the table of windchill values
on page 85.

11.

12.

13.

14.

15.

(a) Find the windchill temperature when the air tem-
perature is 25 °F and the windspeed is 10 mph.

(b) If the windspeed is 20 mph, what air temperature
causes a windchill temperature of —15°F?

(a) Ifthe air temperature is 10 °F, estimate (to the near-
est unit) what windspeed would give a windchill
temperature of —5°F.

(b) Do you think your estimate in part (a) is high or
low? Why?

Atawindspeed of 30 mph and air temperature of 35 °F,
estimate the rate of change of the windchill tempera-
ture with respect to air temperature if the windspeed is
held constant.

Atawindspeed of 15 mph and air temperature of 25 °F,
estimate the rate of change of the windchill tempera-
ture with respect to windspeed.

Windchill tables are constructed from empirically de-
rived formulas for heat loss from an exposed sur-
face. Early experimental work of P. A. Siple and C. F.
Passel,* resulted in the following formula:

W =914+ (r — 91.4)(0.474 4 0.304,/5 — 0.02035).

16.

17.

185
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Here W denotes windchill temperature (in degrees

Fahrenheit), 1 the air temperature (for7 < 91.4°F), and

s the windspeed in miles per hour (for s > 4 mph).’

(a) Compare your answers in Exercises 11 and 12 with
those computed directly from the Siple formula
just mentioned.

(b) Discuss any differences you observe between your
answers to Exercises 11 and 12 and your answers
to part (a).

(c) Why is it necessary to take t < 91.4°F and
s > 4 mph in the Siple formula? (Don’t look for
a purely mathematical reason; think about the
model.)

Recent research led the United States National Weather
Service to employ a new formula for calculating wind-
chill values beginning November 1, 2001. In partic-
ular, the table on page 85 was constructed from the
formula

W = 35.74 + 0.6211 — 35.755%16 + 0.4275¢5%-16,

Here, as in the Siple formula of Exercise 15, W de-
notes windchill temperature (in degrees Fahrenheit),
t the air temperature (for ¢+ < 50°F), and s the wind-
speed in miles per hour (for s > 3 mph).® Compare
your answers in Exercises 13 and 14 with those com-
puted directly from the National Weather Service
formula above.

In this problem you will compare graphically the two

windchill formulas given in Exercises 15 and 16.

(a) If W;(s, t) denotes the windchill function given by
the Siple formula in Exercise 15 and W(s, ¢) the
windchill function given by the National Weather
Service formula in Exercise 16, graph the curves
v = W(s, 40) and y = W,(s, 40) on the same set
of axes. (Let s vary between 3 and 120 mph.) In
addition, graph other pairs of curves y = W,(s, ty),
y = Wa(s, 1p) for other values of ;. Discuss what
your results tell you about the two windchill
formulas.

(b) Now graph pairs of curves y = Wi(sq, 1), vy =
Wa(sp, 1) for various constant values sy for wind-
speed. Discuss your results.

(c) Finally, graph the surfaces z = W;(s,7) and
z = Wa(s, 1) and comment.

4 “Measurements of dry atmospheric cooling in subfreezing temperatures,” Proc. Amer. Phil. Soc., 89

(1945), 177-199,

* From Bob Rilling, Atmospheric Technology Division, National Center for Atmospheric Research
(NCAR), “Calculating Windchill Values,” February 12, 1996. Found online at http://www.atd.ucar.edu/
homes/rilling/wc_formula.html (July 31, 2010).

® NOAA, National Weather Service, Office of Climate, Water, and Weather Services, “NWS Wind Chill
Temperature Index.” February 26, 2004. <http://www.nws.noaa.gov/om/ windchill> (July 31, 2010).
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- Consider the sphere of radius 3 centered at the origin.
The plane tangent to the sphere at (1, 2, 2) intersects
the x-axis at a point P. Find the coordinates of P.

Show that the plane tangent to a sphere at a point P on
the sphere is always perpendicular to the vector op
from the center O of the sphere to P. (Hint: Locate the
sphere so its center is at the origin in R?))

The surface z=3x%+ $x* — {x* — 4y? is inter-
sected by the plane 2x — y = 1. The resulting intersec-
tion is a curve on the surface. Find a set of parametric
equa’cior;s3 for the line tangent to this curve at the point
{Lals—22)

Consider the cone z2 = x? 4+ y2.

(a) Find an equation of the plane tangent to the cone
at the point (3, —4, 5).

(b) Find an equation of the plane tangent to the cone
at the point (a, b, ¢).

(c) Show that every tangent plane to the cone must
pass through the origin.

Show that the two surfaces

Si:z=xy and S z=3x’—y*

intersect perpendicularly at the point (2, 1, 2).

Consider the surface z = x% + 4y°.

(a) Find an equation for the plane that is tangent to the
surface at the point (1, —1, 5).

(b) Now suppose that the surface is intersected with the
plane x = 1. The resulting intersection is a curve
on the surface (and is a curve in the plane x = 1
as well). Give a set of parametric equations for the
line in R? that is tangent to this curve at the point
(1, =1, 5). A rough sketch may help your thinking.

A turtleneck sweater has been washed and is now tum-
bling in the dryer, along with the rest ofthe laundry. At
a particular moment fy, the neck of the sweater mea-
sures 18 inches in circumference and 3 inches in length.
However, the sweater is 100% cotton, so that at 1, the
heat of the dryer is causing the neck circumference to
shrink at a rate of 0.2 in/min, while the twisting and
tumbling action is causing the length of the neck to
stretch at the rate of 0.1 in/min. How is the volume V
of the space inside the neck changing at r = £,? Is V
increasing or decreasing at that moment?

A factory generates air pollution each day according
to the formula

P(S,T) = 3308231745,

where § denotes the number of machine stations in
operation and T denotes the average daily tempera-
ture. At the moment, 75 stations are in regular use and
the average daily temperature is 15°C. If the average

26.

27.

28.

29.

30.

temperature is rising at the rate of 0.2°C/day and the
number of stations being used is falling at a rate of
2 per month, at what rate is the amount of pollution
changing? (Note: Assume that there are 24 workdays
per month.)

Economists attempt to quantify how useful or satisfy-
ing people find goods or services by means of utility
functions. Suppose that the utility a particular individ-
ual derives from consuming x ounces of soda per week
and watching y minutes of television per week is
u(x,y) = 1 — ¢~000L2—0.00005y*

Further suppose that she currently drinks 80 oz of soda
per week and watches 240 min of TV each week. If she
were to increase her soda consumption by 5 oz/week
and cut back on her TV viewing by 15 min/week, is
the utility she derives from these changes increasing
or decreasing? At what rate?

Suppose that w = x? 4+ y? + z2 and x = p cos 8 sin ¢,
¥y = psiné sin g, z = p cos ¢. (Note that the equations
for x, y, and z in terms of p, ¢, and @ are just the con-
version relations from spherical to rectangular coordi-
nates.)

(a) Use the chain rule to compute dw/dp, dw/dyp,
and dw/06. Simplify your answers as much as
possible.

(b) Substitute p, ¢, and @ for x, y, and z in the original
expression for w. Can you explain your answer in
part (a)?

fw=f (ﬂ) show that
Xy

dw ow
2 2
— -y —=0.
* ax 2 ay
(You should assume that f is a differentiable function
of one variable.)
Let z = g(x, y) be a function of class C?, and let
x=¢€"cosf,y =¢ sinf.
(a) Usethechainruletofind dz/0r and 3z/86 interms
of dz/9x and 9z /dy. Use your results to solve for
0z/dx and 0z/dy in terms of dz/dr and 9z/36.

(b) Use part (a) and the product rule to show that

2 2
e—lr E + ..a_z_ .
arz = 902
(a) Use the function f(x, y) = x¥ (= e*'"*) and the

multivariable chain rule to calculate oy (u").
u

(b) Use the multivariable chain rule to calculate
d
E((Sin F)Rety,
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32.

33.

34.

35.

Use the function f(x, y, z) = x** and the multivariable

chain rule to calculate — ().
U

Suppose that f: R” — R s a function of class C2. The
Laplacian of f, denoted V2 £, is defined to be
. aZf 82f aZf
Vf_Bx]z+3x22+ +ax,1;'

When n = 2 or 3, this construction is important when
studying certain differential equations that model phys-
ical phenomena, such as the heat or wave equations.
(See Exercises 28 and 29 of §2.4.) Now suppose that
f depends only on the distance x = (xy, ..., x;) is
from the origin in R”; that is, suppose that f(x) = g(r)
for some function g, where r = ||x||. Show that for all
x # 0, the Laplacian is given by

n —

1
Vif = g'r)+g"(r).

r

(a) Consider a function f(x,y) of class C*. Show
that if we apply the Laplacian operator V? =
8%/8x> + 8% /9y? twice to f, we obtain

9t f atf a*f
VAV )= —= +2 iy
(V) wt dx2dy? i ay*

dax
(b) Now suppose that f is a function of n variables of
class C*. Show that

vein=Y oL,

2.2
dx;ox;

i, j=1

Functions that satisfy the partial differential equa-
tion V2(V?f) = 0 are called biharmonic func-
tions and arise in the theoretical study of elasticity.

Livinia, the housefly, finds herself caught in the oven
at the point (0, 0, 1). The temperature at points in the
oven is given by the function

T(x,y,2) = 10(xe™ +ze™),

where the units are in degrees Celsius.

(a) If Livinia begins to move toward the point (2, 3, 1),
at what rate (in deg/cm) does she find the temper-
ature changing?

(b) In what direction should she move in order to cool
off as rapidly as possible?

(c) Suppose that Livinia can fly at a speed of 3 cm/sec.
If she moves in the direction of part (b), at what
(instantancous) rate (in deg/sec) will she find the
temperature to be changing?

Consider the surface given in cylindrical coordinates
by the equation z = r cos 36.

(a) Describe this surface in Cartesian coordinates, that
is,as z = f(x,y).

36.
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(b) Is f continuous at the origin? (Hint: Think cylin-
drical.)

{(c) Find expressions for df/dx and df/dy at points
other than (0, 0). Give values for df/dx and af/ay
at (0, 0) by looking at the partial functions of f
through (x, 0) and (0, y) and taking one-variable
limits.

(d) Show that the directional derivative Dy, f(0, 0) ex-
ists for every direction (unit vector) u. (Hint: Think
in cylindrical coordinates again and note that you
can specify a direction through the origin in the
xy-plane by choosing a particular constant value
for6.)

(e) Show directly (by examining the expression for
df/dy when (x, y) # (0, 0) and also using part (c))
that 9f /0y is not continuous at (0, 0).

(f) Sketch the graph of the surface, perhaps using a
computer to do so.

The partial differential equation

%u  8*u 8w 3%u

a2 Ty T a2 Car
is known as the wave equation. It models the motion
ofawave u(x, y, z, 1) in R* and was originally derived
by Johann Bernoulli in 1727. In this equation, ¢ is a
positive constant, the variables x, y, and z represent
spatial coordinates, and the variable ¢ represents time.
(a) Let u =cos(x —1)+sin(x +1) — 2e* — (v —
t)’. Show that u satisfies the wave equation with
c=1.
(b) More generally, show that if fy, fa, g1, g2, i1, and
h, are any twice differentiable functions of a single
variable, then

ulx,y,z,) = filx =)+ falx +1)
+g(y—t)+ g0y +1)
+h(z—t)+h(z+1)

satisfies the wave equation with ¢ = 1.

Let X be an open setin R". A function F: X — Ris said to be

homogeneous of degree d if, forall x = (x1,x2,...,x,) € X
and all t € R such that tx € X, we have
Btk thay vai )= 1 PR % 5 5. Fa)s

Exercises 37—44 concern homogeneous functions.

In Exercises 37—41, which of the given functions are homoge-
neous? For those that are, indicate the degree d of homogeneity.

37. F(x,y)=x>4+xy* — 6y°

38.

F(x,y,2)=x3y —x?z2 + 78

39. F(x,y,z2)=zy* —x* +x%z
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40. F(x,y) = e¥"

41, F(x,y,2) =

2+ 1%y —y2?
xyz + Txz?

42. If F(x,y,z) is a polynomial, characterize what it

43. Suppose F(x;, xa, ..

means to say that F is homogeneous of degree d (i.e.,
explain what must be true about the polynomial if it is
to be homogeneous of degree d).

., x,) is differentiable and homo-
geneous of degree d. Prove Euler’s formula:

44.

(Hint: Take the equation F(txy,1x2,...,1x,) =
14 F(xy, xa, ..., x,) that defines homogeneity and dif-
ferentiate with respect to ¢.)

Generalize Euler’s formula as follows: If F is of class
C? and homogeneous of degree d, then

- d’F
i =d(d—-1)F.
ZxxJanBXj ( )

i,j=I

Can you conjecture what an analogous formula
involving the kth-order partial derivatives should look
like?



