MAT 300/	500	Quiz 5	Answer Sheet							
Spring 2024										
Quiz ID:	WH	K		Name: _						
1.										
2.										
3.										
4.										
5.										
6.										
7.										
8.										
9.										
10.										

Submit electronic answers at

http://azrael1.digipen.edu/cgi-bin/MAT300quiz.pl

Test ID: WHK		Name:			
MAT 300/500	Quiz 5	Spring 2024			
		$\{6,6,6\}$, with associated quadratic <i>B</i> -splines which			

-	11 300/300	Q or		~primo = 0=	-	
1.	Let \mathbf{t} be the knot se	quence $\{-2, -1, 0, 1, 1\}$, 2, 2, 2, 3, 4, 4, 4, 6, 6, 6	}, with associated qua	dratic B -splines which	
	are a basis of a vector	or space V of the form	$P_{2,\mathbf{r}}^k[0,1,2,3,4,6]$. S	uppose that $\gamma(t) = \sum_{t=0}^{\infty}$	$\sum_{i} P_i \mathcal{B}_i^d(t)$ is a <i>B</i> -spline	
curve with control points P_0, \ldots, P_{11} . To compute $\gamma(3.5)$, what is the index J in the DeBoor algorithm by $t \in [t_J, t_{J+1})$?						
	a) 7	b) 10	c) 8	d) 9	e) 6	
2.	Same knot sequence	${f t}$ and vector space V a	as in the previous ques	stion. Find the continu	ity vector r .	
	a) $(1,0,0,-1)$	b) $(0,-1,1,-1)$	c) $(2,-1,1,0)$	d) $(2,3,1,3)$	e) $(0, 1, 0, -1)$	
3.	Same knot sequence	${f t}$ and vector space V a	as in the previous ques	stion. Find the dimens	sion of V .	
	a) 13	b) 14	c) 12	d) 10	e) 11	

4. Same knot sequence t and vector space V as in the previous question. Let S be the B-spline basis of V with knot sequence t. How many B-splines in S are zero for all t in the interval [2, 3]?
a) 8
b) 5
c) 9
d) 7
e) 6

5. Same knot sequence t and vector space V as in the previous question. Let S be the B-spline basis of V with knot sequence t. How many B-splines in S have exact order of continuity r = 1 at t = 2? (Recall: exact order of continuity of a B-spline \(\mathcal{B}_i^d(t)\) at a knot value \(t_j\) is predicted by the multiplicity of \(t_j\) inside the sequence of knots \(t_i, \ldots, t_{i+d+1}\) used to define the B-spline \(\mathcal{B}_i^d(t)\).
a) 3
b) 4
c) 5
d) 2
e) 1

- 6. Same knot sequence \mathbf{t} and vector space V as in the previous question. Let S be the B-spline basis of V with
- knot sequence **t**. How many *B*-splines in *S* have exact order of continuity r = 1 at t = 3?

 a) 3 b) 4 c) 5 d) 2 e) 1
- 7. Which sequence of four knots will result in a quadratic B-spline which is continuous and consists of two parabolas which meet at a point which is the only place where the function is not differentiable?
 - a) 0,1,2,2 b) 0,0,1,1 c) 0,1,1,2 d) 0,0,0,1 e) 0,0,1,2
- 8. Which sequence of four knots will result in a quadratic B-spline which is continuous and differentiable except at one point, where it is continuous but not differentiable, and consists of two parabolas one of which is concave up and the other concave down?
- a) 0,1,2,2 b) 0,0,1,1 c) 0,1,1,2 d) 0,0,0,1 e) 0,0,1,2
- 9. Which sequence of four knots will result in a quadratic B-spline which is continuous and which consists of only one parabola?
 - a) 0,1,2,2 b) 0,0,1,1 c) 0,1,1,2 d) 0,0,0,1 e) 0,0,1,2
- 10. Which sequence of five knots will result in a cubic B-spline which is continuous, but fails to have a continuous first derivative?
 - a) 0, 1, 1, 2, 2 b) 0, 0, 0, 1, 2 c) 0, 1, 1, 2, 3 d) 0, 1, 1, 1, 1 e) 0, 0, 1, 1, 2