
Extra Credit Programming Projects

MAT 300/500 – Spring 2025

For each part, the student should implement all of the required details. If there are suggestions for
changes to the described interfaces, please bring those up to the TA and instructor for consideration.

Grading for these projects will be out of 10 points. This grade will be converted to allow a maximum
2% flat increase to course grade for each project completed.

Final due date for any and all extra credit projects is: Friday, April 11. Absolutely no exceptions
or extensions will be made to this date.

EC I: Hermite Interpolation (Osculation)

In this part you will extend the polynomial interpolation to include derivatives. This is called
osculation, or Hermite interpolation. The base case is still polynomial interplation. Additionally,
the user will need to be able to enter derivative information. For the first derivative, you should
have an option to do this graphically in the following way: The user should be able to right-click on
one of the input points and have a drop down menu pop up. In this menu one of the items should
be to show tangents. If this is selected, a small tangent line segment will appear with default slope
zero at the point. The slope of this line should then be adjustable with mouse control (either by
simply moving the mouse or the wheel, etc.) A further click should select the current slope and
assign it to that point.

Higher derivatives will have to be entered through an input box. This input should also be an option
for the first derivative, or slope, as well. Once a collection of points has been assigned derivative
values the curve should be redrawn, solving the given osculation problem with the appropriate
degree polynomial.

EC II: Best Fit Line and Parabola

In this part you will compute a best fit line and parabola to the input points. There should be an
option for line or parabola, which defaults to line. When the user has clicked on two input points,
the line through the two points should be graphed. When the user clicks on three or more points,
an approximate line is graphed according to the following procedure:

First, the mean (or average) point M = (xM , yM) is calculated by averaging all of the x coordinates
to get xM and averaging all of the y coordinates to get yM . The desired line will pass through M .
A precomputed circle of points is now used around M to form a new collection of lines through M
and one of the points on the circle. (Alternatively, a box can be used. In either case, this is simply
to give a discrete set of points which can be used together with M to determine a discrete set of
lines which pass through M and are evenly distributed like the spokes of a wheel.) Each line L in
this set is tested by computing the sum S(L) of the perpendicular distances between the line and
each input point. We want to minimize this sum. Hence, we choose the line with the smallest value
of S(L). To increase speed and efficiency, a small number of points k on the circle (or box) can be
used initially, say k = 100. Then the three lines with smallest value for S(L) are identified. Call
these lines L1, L2, and L3, and call the points that they pass through on the circle (or box) P1, P2

1



and P3. Now identify a new set of k points on the circle (or box) in between these three points, by
evenly spacing them along the arc that contains P1, P2, and P3. This process can be interated. A
tradeoff bewteen the number of iterations and the value of k can be tested for speed and efficiency.
Call the best fit line Lbf .

Once the best fit line is computed, the best fit parabola is based on this line. First find the
perpendicular bisector B which passes through M and is perpendicular to Lbf . Now group the
input points into two groups which are on either side of the line B. (Leave out points on B.) Call
these sets of points S1 and S2. Compute the mean points for these two sets, say M1 and M2. Next
form a family of parabolas by choosing control points Q0 = M1 and Q2 = M2 where Q1 will be any
point on the line B. Choose a discrete set of such points Q1 which are distributed evenly on the
segment which extends a maximum distance of 4c where c is the maximum of the two distances d1
from M1 to M and d2 from M2 to M . For each such Q1 there is a quadratic Bezier curve defined
by the control points Q0, Q1, and Q2. Call this curve Ct. For each Ct compute the sum S(Ct)
of the perpendicular distances between Ct and Pi for each of the input points Pi. Choose the Ct

with the smallest value of S(Ct). This is the first candidate for the best fit parabola Cbf . A similar
approach to enhance speed and efficiency that was used to find Lbf can be used here by working
with subintervals of the line segment to refine the search for the smallest value of S(Ct).

Finally, for reasons of symmetry, we repeat all of the above paragraph with the role of B and Lbf

swapped. This produces another candidate for Cbf , so we can choose the one with smaller value of
S(Ct), and we call it the best fit parabola.

EC III: Audio Signals with Bernstein Polynomials

This project is an audio enhancement to the first project. The interface to the first project stays
the same, but now you would compute an audio buffer of data in the background which simulates
one cycle of a polynomial spline curve. The first half-cycle of the curve, say f(t), is exactly the
one being displayed in the window on the interval [0, 1], and the second half-cycle, say g(t), is f(t)
inverted and graphed over the interval [1, 2]. By inverted we mean that the curve is evaluated as

g(t) = −f(2 − t).

This gives one complete cycle of the piecewise function over the interval [0, 2]. Note: the default
case, with all control coefficients equal to 1, gives one cycle of a square wave.

This function is then scaled to fit into one cycle for an audio buffer, which should have the default
frequency of 441 Hz (cycles per second) with discrete sampling rate of 44100 Hz. This means that
one cycle fits into 44100/441 = 100 samples along the t axis for audio output. The cycle should also
be normalized to have maximum value set to 0.85. Such cycles should be continuously fed to the
audio output buffer so that these are played back through the speakers. Then, as the user changes
the shape of the curve through the interface by moving control points and changing the degree,
the sound quality, or “timbre”, should change in real-time. In order to maintain consistent output,
the maximum value of the function should be normalized to 0.85, even as the user is changing the
shape of the curve. The user should also be able to change the frequency with a slider.

As a starting point one can use the JUCE tutorial called SineSynthTutorial.

2


