MAT 320

Quiz ID: MVX

Name: _____

Answers:

1.

2.

3.

4.

5.

6.

.

- 7.
- 8.
- 9.
- 10.

Submit electronic answers at

http://azrael.digipen.edu/cgi-bin/MAT320quiz.pl

Test ID: MVX

Name: _____

MAT 320 Quiz 1 Fall 2023

- 1. Factor the polynomial $p(x) = x^3 + 1$ into linear and quadratic factors. The quadratic factor is:
 - a) $x^2 + x 1$ b) $x^2 x 1$ c) $x^2 x + 1$ d) $x^2 + x + 1$ e) $x^2 + 1$
- 2. Same polynomial p(x) as in the previous question. Use the quadratic formula to find the two complex roots of the quadratic factor. One of them is:

a)
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
 b) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ c) $1 + \sqrt{3}i$ d) $\frac{1}{4} - \frac{\sqrt{3}}{4}i$ e) $\frac{1}{4} + \frac{\sqrt{3}}{4}i$

- 3. Let q(x) = (x (a + bi))(x (a bi)) be a quadratic polynomial in factored form. Multiply out so that q(x) = x² + c₁x + c₀. What is c₁?
 a) -2bi
 b) -2a
 c) a² + b²
 d) a + bi
 e) 2a + 2bi
- 4. Same polynomial q(x) as in the previous question. What is c_0 ? a) -2bi b) -2a c) $a^2 + b^2$ d) a + bi e) 2a + 2bi
- 5. Let $f(t) = e^{i4\pi t}$ be a phasor defined for all real numbers t, where t represents time in seconds. What is the frequency of this phasor measured in Hz (cycles per second).
 - a) 2π b) 2 c) $\frac{1}{2}$ d) 4 e) 4π
- 6. Same f(t) as in the previous question. What is the (smallest positive) period of f? a) 2π b) 2 c) $\frac{1}{2}$ d) 4 e) 4π
- 7. Let $f_c(z)$ be a complex function $f : \mathbb{C} \to \mathbb{C}$ which multiples the input complex variable z by the constant complex number c = a + bi. Assume f rotates z by an angle 120 degrees, or $\frac{2}{3}\pi$ radians, counterclockwise, and use this to solve for c. What is the real part a?
 - a) $-\frac{1}{2}$ b) 2 c) -1 d) $\frac{1}{2}$ e) 1
- 8. Same $f_c(z)$ as in the previous question. Find the Cartesian form for $f(e^{i\pi/3})$. a) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$ b) $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$ c) -1 d) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ e) 1
- 9. Let $g(z) = \frac{1}{|z|}$ so that $g : \mathbb{C} \to \mathbb{R}$. Find g(1+i). a) $\frac{3}{2}$ b) $\frac{\sqrt{2}}{2}$ c) 1 d) $\frac{1}{2}$ e) $\sqrt{2}$
- 10. Same g(z) as in the previous question. Find the maximum value of g(z) for inputs z = x + yi where y = x 1.
 - a) $\frac{3}{2}$ b) $\frac{\sqrt{2}}{2}$ c) 1 d) $\frac{1}{2}$ e) $\sqrt{2}$