M	\mathbf{AT}	320
$\bot V \bot$.	$\Delta \mathbf{L}$	O4U

Quiz 1

Fall 2023

Name: _____

Qui	z ID:	ZFM
Ans	wers:	
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		

Submit electronic answers at

http://azrael.digipen.edu/cgi-bin/MAT320quiz.pl

MAT 320

Quiz 1

Fall 2023

1.	Factor	the	polynon	p(x))=3	$x^3 + 1$	into	linear	and	quadratic	factors.	The	${\it quadratic}$	factor
	is:													

a) $x^2 + x + 1$ b) $x^2 - x + 1$ c) $x^2 + x - 1$ d) $x^2 - x - 1$ e) $x^2 + 1$

2. Same polynomial p(x) as in the previous question. Use the quadratic formula to find the two complex roots of the quadratic factor. One of them is:

a) $\frac{1}{4} - \frac{\sqrt{3}}{4}i$ b) $1 + \sqrt{3}i$ c) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$ d) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ e) $\frac{1}{4} + \frac{\sqrt{3}}{4}i$

3. Let q(x) = (x - (a + bi))(x - (a - bi)) be a quadratic polynomial in factored form. Multiply out so that $q(x) = x^2 + c_1 x + c_0$. What is c_1 ?

a) a + bi

b) $a^2 + b^2$ c) -2bi d) -2a e) 2a + 2bi

4. Same polynomial q(x) as in the previous question. What is c_0 ?

a) a + bi b) $a^2 + b^2$ c) -2bi d) -2a

e) 2a + 2bi

5. Let $f(t) = e^{i4\pi t}$ be a phasor defined for all real numbers t, where t represents time in seconds. What is the frequency of this phasor measured in Hz (cycles per second).

a) 4

c) 2π

6. Same f(t) as in the previous question. What is the (smallest positive) period of f?

a) 4

b) $\frac{1}{2}$

c) 2π

d) 2

7. Let $f_c(z)$ be a complex function $f: \mathbb{C} \to \mathbb{C}$ which multiples the input complex variable z by the constant complex number c = a + bi. Assume f rotates z by an angle 120 degrees, or $\frac{2}{3}\pi$ radians, counterclockwise, and use this to solve for c. What is the real part a?

a) $\frac{1}{2}$

b) -1

8. Same $f_c(z)$ as in the previous question. Find the Cartesian form for $f(e^{i\pi/3})$.

a) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ b) -1 c) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$ d) $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$

e) 1

9. Let $g(z) = \frac{1}{|z|}$ so that $g: \mathbb{C} \to \mathbb{R}$. Find g(1+i).

b) 1 c) $\frac{3}{2}$ d) $\frac{\sqrt{2}}{2}$ e) $\sqrt{2}$

10. Same g(z) as in the previous question. Find the maximum value of g(z) for inputs z = x + yiwhere y = x - 1.

a) $\frac{1}{2}$

b) 1

c) $\frac{3}{2}$ d) $\frac{\sqrt{2}}{2}$

e) $\sqrt{2}$