
Math 320 Programming Project II - Fall 2024

Please submit all project parts on the Moodle page for MAT 320. You should
include all necessary files to recompile, and a working executable, all in a
zipped folder (one file for upload). Time-stamp determines the submit time,
due by midnight on the due-date. A user interface is not required, however
since more students are adopting JUCE for audio projects, it is reasonable to
do this sequence of projects with JUCE also. The basic requirements remain
the same: text input and output.

Part II: Discrete Fourier Transform – Basic and Recursive Forms

1. Discrete Fourier Transform (DFT) - Basic Version

• input: command line arg N , text file of N complex numbers

• output: DFT of input as list of N complex numbers

2. Recursive (Fast) Fourier Transform (FFT) - First Version

• input: command line arg N = 2m, text file of N complex numbers

• output: DFT of input as list of N complex numbers

Notes:

1. Please follow these naming guidelines: there should be two separate
programs, one called dft1.cpp and one called fft1.cpp. They should
compile on the command line with g++ and should not require any
other headers or linked files.

2. The basic version of the DFT is Formula (2.6) on page 152 of the
text book. If the inputs are labelled x0, . . . , xN then the outputs are
X0, . . . , XN .

3. The recursive version of the DFT, which is the first version of the FFT,
is described in section 6 of chapter 8, pages 162-163 of the text book.
The inputs and outputs are identical to the DFT. This time you write
a recursive function which is based on Formula (6.9) on page 163.

1



4. To implement the recursive function I recommend you write a VOID
function which takes as input arguments: two arrays of complex dou-
bles, one for input and one for output, and the positive integer N = 2m.
Each recursive call will maintain that the integer is still a power of 2.
The case when N = 1 will be that the function simply writes the com-
plex number input to the output. For general N = 2m the function
should create 4 new arrays of N/2 complex numbers, two for the even
indices and two for the odd indices. Each pair of arrays is again used
for input and output. Next, the inputs are assigned according to evens
and odds, then the outputs are computed with the recursive call to the
function using arguments: eveninputs, evenoutputs, N/2, and then:
oddinputs, oddoutputs, N/2. Finally, you will need two loops that im-
plement the equation (6.9) which puts the even and odd outputs back
together to give the level N outputs as a sum with a special expo-
nential factor in front of the odds. The reason for two loops is that
(6.9) is slightly different for the second half of the outputs, where the
exponential factor simplifies as described in the paragraph after (6.9).

2


