SIG G R APIH

¥

Smooth Interpolation of Orientations

with Angular Velocity Constraints
using Quaternions

Alan H. Barrf, Bena Currint, Steven Gabriel™, John F. Hughestt

California Institute of F_r'echnologyT
Sage Design'f
Brown University

Abstract

In this paper we present methods to smoothly inter-
polate orientations, given N rotational keyframes of an
object along a trajectory. The methods allow the user
to impose constraints on the rotational path, such as
the angular velocity at the endpoints of the trajectory.

We convert the rotations to quaternions, and then
spline in that non-Euclidean space. Analogous to the
mathematical foundations of flat-space spline curves,
we minimize the net “tangential acceleration” of the
quaternion path. We replace the flat-space quantities
with curved-space quantities, and numerically solve the
resulting equation with finite difference and optimiza-
tion methods.

1 Introduction

The problem of using spline curves to smoothly in-
terpolate mathematical quantities in flat Euclidean
spaces 1s a well-studied problem in computer graph-
ics [BARTELS ET AL 87], [KOCHANEK&BARTELS 84,
Many quantities important to computer graphics, how-
ever, such as rotations, lie in non-Euclidean spaces. In
1985, a method to interpolate rotations using quater-
nion curves was presented to the computer graph-
ics community [SHOEMAKE 85]; beyond this, there
has been relatively little work in computer graphics
to smoothly interpolate guantities in non-Euclidean,
curved spaces [GABRIEL&KAJIYA 85]. In that paper,
Kajiya and Gabriel developed a foundation for an “in-
trinsic” differential geometric formulation for comput-

ing spline paths on curved manifolds, and applied their
results to quaternion paths.

wiirst

at=q*
b e
/

p2ell

wlast

Figure 1. The interpolation problem we solve:

Given K keyframe quaternions, (capital) Qi = 1,
2,-+-, K, at keyframe times t; = p; k, what are the n opti-
mal interpolated quaternions q(®, p=12,-,n at equally
spaced times 7, = & (p— 1), that pass through the keyframe
quaternions? q?) = Q' and t; = mp, when p = p;. Option-
ally, find the n rotations (plus two extra keyframe rotations)
when given angular velocities wt and w!25t of the first and
last rotation along the path.

fol + .
Proceedine

] ,::'; ?

o
f} S

bV




Splining in non-Euclidean Spaces

This paper presents a simpler version of the
Gabriel/Kajiya approach to splining on arbitrary mani-
folds. Our approach uses extrinsic coordinates and con-
straints (rather than intrinsic methods, Christoffe] sym-
bols and coordinate patches), and generalizes to other
manifolds that are embedded in Euclidean space.! The
problem of computing spline curves on curved manifolds
is of increasing importance to computer graphics, and
we predict many future generalizations.

There are several reasons why someone would choose
to use our interpolation techniques:

e The paths we generate through rotation space are
very smooth.

o QOur techniques allow the user to specify arbitrar-
ily large initial and final angular velocities of a
rotating body; by assigning large angular veloci-
ties, a user can make an object tumble several full
turns between successive keypoints.

e It is fairly casy to add additional constraints,

e The techniques generalize to interpolations of
other quantities in non-Euclidean spaces.

e The techniques are fast enough to experiment
with, taking a few minutes per interpolation.

Of course, we cannot claim to have solved all
problems of interpolating rotations and orientations.
Through our choice of representation, we will have
the classic advantages and disadvantages of using unit
quaternions to represent rotations.? Also implicit in
our approach is the assumption that the geometry of
the space of orientations has a certain homogeneity, and
that we can mathematically specify all of the constraints
that we wish to apply.?

We find a path that minimizes a measure of net
bending, We implement this, however, using a finite
difference technique, so that we end up with a sequence
of points on the path, rather than a continuous path. To
produce a continuous path, we use Shoemake’s slerping
to interpolate between these points.

In section 2, we provide a brief discussion of quater-
nions, and present intuitive mathematical background
to motivate the differences between interpolating in flat
space and curved spaces; in section 3 we sketch the over-
all algorithm; in section 4 we present the constrained

L'Whitney's original embedding theorem tells us that every M
dimensional manifold can be embedded in a 2 M + 1 dimensional
Fuclidean space.

2The main advantage is that quaternion constraints are sim-
ple to enforce (constructing a four dimensional unit vector); the
main disadvantage is double representation: there are two unit
quaternions that represent each rotation.

3For tumbling bodies this is reasonable, but it is not completely
true for camera orientations: certain orientations (ones with no
“tilt” around line of sight of the camera) are far preferable to
others. We would need to determine the appropriate constraints
to minimize the net tilting.

optimization problem; section 5 speaks briefly about
numerical derivatives on manifolds; section 6 presents
methods to solve the problem, while section 7 presents
our results.

2 Mathematical Background

Shoemake’s paper on guaternions provides a good in-
troduction to the mathematics of quaternions and their
relationship to rotations. For our results, we need three
basic facts about quaternions:

e The set of unit-length quaternions (i.e., expres-
sions of the form q = a + bi + ¢j + dk with a? +
b2 +c?+d? = 1) corresponds to the unit 3-sphere in
4-dimensions. The quaternion a + bi + ¢j + dk cor-
responds to the point (a, b, ¢, d). The same quater-

nion is denoted by q = , where s = g and

v = (¢, d).

e There i1s a natural map that takes a unit quater-
nion and produces a rotation: the quaternion a 4+
bi+cj + dk corresponds to a rotation of 2 cos™*(a)
about the axis (b,e,d) in 3-space. If (b,c,d) =
(0,0,0) the rotation angle is 2 cos™!(41) = 0, and
the rotation is the identity.

e The map from unit quaternions to rotations is 2-
to-1. For every rotation, two quaternions, +q and
—q, lying at antipodal ends of a hypersphere, cor-
respond to it.

Advantages of quaternions. There are several rea-
sons to use quaternions to describe rotations. First, the
quaternion space has the same local topology and geom-
etry as the set of rotations (this is net true of the space of
Euler angles, for example, but is true of the 3 x 3 orthog-
onal matrices of determinant 1). Second, the number of
coordinates used in describing a quaternion is small (4
numbers, in contrast to the 9 in a 3 x 3 matrix). Third,
the number of constraints on these coordinates is small:
the only constraint on a quaternion representing a ro-
tation is that it have unit length; a 3 x 3 matrix must
satisfy six equations to represent a rotation. Finally,
the extrinsic equations for quaternions turn out to be
fairly simple.

Disadvantages of quaternions. The main disadvan-
tage of using quaternions is that their 2-to-1 nature ne-
cessitates a preprocessing step, to choose whether the
plus or minus keyframe quaternion is the appropriate
one to use.

Euclidean and non-FEuclidean-space splines. Since
the 3-sphere is a non-Euclidean space, we discuss inter-
polation methods for Euclidean spaces, and then mo-
tivate and desecribe a generalization to non-Euclidean




spaces. We will informally refer to them as “flat” spaces
and “curved” spaces respectively.

2.1 Flat-space interpolation

The Hermite formulation expresses a spline curve as a
parametric cubic curve 4(t) that starts and ends at two
given points?, ¥(0) = P® and +(1) = P!, and has given
velocities there, i.e., 4/(0) = R® and /(1) = R'. Given
these boundary conditions (i.e., P°, P!, R?, and R!),
we can find a unique cubic path that satisfies them. But
why is a cubic the right curve to use?

One answer 1s given by reformulating the problem to
ask “Among all curves starting at P? with velocity R®
and ending at P’ with velocity R', what curve bends
the least?” We approximate the least square measure of
curvature by minimizing the net squared length of the
acceleration vector, 4". Thus we seek to minimize

e= [ v &

over all paths - that satisfy the boundary conditions.
The Euler-Lagrange equations [zWILLINGER 89] pro-
vide a necessary condition for -y to be a minimum. Writ-
ing out these conditions gives v = 0, which means
that each component of ~(¢) must be a cubic function
of 1.

A physical implementation of splines in a flat
space. The word “spline” originally referred to a
thin strip of wood or metal that was constrained by
pins to form smooth curves for drafting or shipbuild-
ing. For drafting, the pins were placed onto a flat sur-
face; for shipbuilding, rigid posts were inserted into the
earth, and wooden flexible planks were threaded be-
tween them. In each case, the splines flexed to meet the
positional constraints imposed by the pins or posts. The
spline took on curved shapes in its attempt to achieve
a low-energy state, governed by equation (1).

2.2 Flat space splines versus curved-
space splines.

We would like to carry out an analogous computation
in a curved space: we define a “bending” measure of a
curve, and then determine which curves minimize the
measure, Unfortunately, the ordinary second derivative
of a path is no longer the right way to measure net
“bending.” We can understand this by considering the
problems that arise even for surfaces in 3-space.

If + is a path on a surface M in 3-space, then « can
be thought of as a path in 3-space as well. As such,
at each time ¢ the path has a velocity vector +/(¢) and
an acceleration vector 4" (¢). Because - lies within the

4We use superscripts to indicate different vectors, and sub-
scripts to denote «, v, 2z, etc components of vectors.

surface, its velocity vector will always be tangent to the
surface. Its acceleration vector, however, does not have
to lie within the surface. It is likely to have components
normal to the surface, as well as components tangential
to the surface.

In Figure 2 we see a pair of curves on a surface. The
midpoint of the upper curve has an acceleration vector
a that points both out from the surface and up a little.
We see that the acceleration vector a is not parallel to
the surface normal N; the “non-N part” of vector a
(the tangential acceleration or covariant acceleration) is
labeled S in the drawing. The acceleration vector of the
lower curve actually coincides with the normal vector to
the surface, and hence its tangential acceleration is zero.

'
\

Figure 2. Two curves on a curved surface. The upper curve

has an acceleration vector a, that does not lie in the surface.
The vector IN is the normal vector to the surface, along the
path. The tangential part of the acceleration is the vector
S = a\ N (described in section 2.3). The lower curve’s
acceleration is parallel to N, hence it has zero tangential
acceleration.

A physical analogy. Imagine driving in a small circle
in a hilly region. You feel two sorts of acceleration: you
bounce up and down in your seat as you go over bumps,
and you are pushed against your car door because you
are turning in a tight circle. The first is acceleration
in the direction normal to the surface of the earth; the
second is the tangential acceleration. Note that if you
want to take a drive, any path you take is likely to
have some net tangential acceleration. But to make the
trip as comfortable as possible, minimizing tangential
acceleration is desirable.

Normal acceleration is inevitable. By contrast, the
normal component of the acceleration is a necessary evil.
Imagine trying to get from one place on a sphere to an-




other in a way that minimizes total acceleration. If you
travel along a great circle at a constant speed, the only
acceleration will be normal. If you try to adjust your
path so that you undergo ne acceleration, you will have
to be traveling in a straight line in 3-space, and hence
will have to leave the surface of the sphere. This gets rid
of the normal acceleration, but at the cost of violating
the requirement that -y be a path on the surface.

Another physical example. Let us consider making a
physical spline onto a spherical globe. Instead of placing
pins into a flat drafting surface, we push the pins into
the globe itself. We thread a semi-rigid elastic strip
through the pins, making sure that the strip stays on
the globe while being constrained by the pins. Since the
strip needs to stay on the globe, we do not penalize it
for bending to stay on the globe.

These examples motivate why we do not penalize
acceleration normal to the surface, while penalizing ac-
celeration within the surface, for constructing splines
on curved surfaces. In generalizing Equation 1 to
curved spaces, Kajiya and Gabriel therefore replaced
the squared length of the acceleration vector with the
squared length of the tangential acceleration. This is
the starting point for our solution: we will seek a path
in quaternion space, i.e., a path on the unit 3-sphere
in 4-space, that minimizes the total squared tangential
acceleration.

2.3 A formula for tangential accelera-
tion

Given two n dimensional vectors a and b, we wish to

project away and remove all portions of b found in vec-

tor a. The notation we use for this is a \ b (read as
vector a “without” vector b). By definition,

a\b =a—ab, such that
(a\b)-b=0

(D)

(b-b)

which implies that o =

If the surface M is a unit sphere, then the unit nor-
mal at the point (a,b,¢) is (a,b,¢). So for a path ~
on the unit sphere, the total acceleration at time ¢ is
~""(t); its normal vector is y(¢) itself, and the tangential
acceleration S(¢) is given by

S(t) =~"(t) \ ¥(1).
For other applications, the formula for tangential accel-
eration of a curve on an arbitrary implicitly defined surface

flz)=101s
S(t)=+"(t)\ N, where

N =V

2.4 Physical meaning of paths on the
quaternion sphere

We have already noted that each unit quaternion corre-
sponds to a rotation. If we think of this rotation acting
cn arigid body in a “home” coordinate system, then we
can say that each quaternion corresponds to an orienta-
tion of the rigid body. Therefore a path in the quater-
nion sphere represents a continuously changing orienta-
tion. The derivative of the path at a particular instant
represents the rate of change of orientation of the body,
essentially its angular velociiy. Thus to specify the end-
points and end tangents of a quaternion curve means to
specify the initial and final orientations of a rigid body
and its angular velocities at those points.

3 Algorithm Description

We provide a sketch of the overall algorithm in figure 3,
using the curved-space results of the previous sections.
In the subsequent few sections, we develop the math-
ematics for step 2. The implementation for step 2 is
found in section 6.

l. Preprocess orientations into
keyframe quaternions, Q' as shown
in Appendix A

2. Use constrained cptimization
techniques as described in section
6 to compute quaternions
interpolated between the
keyframes.

3. Opticnally slerp between the
interpolated quaternions to get a
continuous representation.

4, Convert the quaterniomns back into
rotation matrices (or other
desired form).

Figure 3. The steps of the algorithm.

4 Mathematical Formulations

In this section, for our constrained optimization prob-
lem, we consider some of the merits of using a contin-
uous derivative versus using discrete derivatives. Ulti-
mately we will choose the discrete approach, because it
is simpler. The reader should not infer that continu-
ous approaches are not worthy of further investigation,
however.




4.1

The problem statement for the continuous version with-
out angular velocity constraints is: given K keyframe
quaternions, Q!, Q?, ., Q¥ at times 1, 5, -+, tg,
what is the unit quaternion curve +(#) of minimal net
least square tangential acceleration that passes through
the points?

We are looking for the unknown {four dimensional)
unit magnitude quaternion function ~(¢) which mini-
mizes &, the net square magnitude of the tangential ac-
celeration. Without loss of generality,® we stipulate that
t; = 0. Thus we minimize

Continuous derivative approach

£ = f “) N @) de

subject to the constraints
ity = Q
()]

The boundary value constraints ensure that the
quaternion path passes through the keyframe quater-
nions; the unit magnitude constraint keeps the quater-
nion on the unit 3-sphere. tx and 0 are the (prescribed)
values of ¢ at the endpoints of the quaternion path.

This constrained optimization problem is a caleu-
lus of variations problem, which produces an Euler-
Lagrange ordinary differential equation formulation
with constraints [ZWILLINGER]. It is an extrinsic form
of the Gabriel/Kajiya equation. The authors have de-
rived this equation, but feel it would needlessly clutter
the presentation. The approach involves the solution
of a K-point ODE boundary value problem with con-
straints; we leave the pursuit of this approach as future
work.

boundary values :

[l
_D—'

magnitudes :

4.2 Discrete derivative approach

If we do not wish te solve K-point boundary value prob-
lems, we can make discrete approximations to convert
the calculus of variations problem into a calculus prob-
lem. Instead of solving for an unknown function ~(2),
we solve for n fixed quaternions q®, p=1,2,---,n. We
retain the constraints that each q(® is a (four dimen-
sional) unit vector, and that the appropriate q#*)s coin-
cide with our keyframe quaternions Qf, i =1,2,---, K.

We replace the continuous derivatives v(t)” in the
£ equation with a numerical approximation, shown in
section 4.3; we denote the discrete derivative approxi-
mation with (q*))”, and compute them from the q(®)s.
In addition, we replace the integral with a discrete ap-
proximation, the sum of about n equally spaced values,
times the stepsize, h = tg /(n — 1).

5The reader can shift the arguments of the function to reduce
a t; # 0 problem to a {3 = 0 problem.

Thus, we minimize the function

Pmax

Z ‘(q(p))” \ @ ¥

=Pmin

EBlq) = A

subject to the constraints that
q®) = 9F
la®] = 1,

boundary values : 1=1,2,-- K

magnitudes : p=12-n

The p; are those values of p where we wish the inter-
polated quaternions q®®) to coincide with the keyframe
quaternions Q'i. p1 =1, and px = n; Pmin = lor 2
and pmax = n or n— L. They are chosen so that (q®)”
can be computed in each term in the sum. (This is
equivalent to having a weighting factor in the sum).

4.3 Discrete second derivatives

A simple discrete version of the second derivative is the
three-point formula:

(p+1) _ 94(2) (p—-1)
_q 2q%) + g
(q(p))ff - o7

We now have a calculus problem: find the n quaternions
g} that minimize the scalar function E(q) subject to
the above constraints. Without the angular velocity
constraints we let pmin = 2 and ppax = n — L.

4.4 Angular velocity constraints

Sometimes, we may wish to stipulate that angular veloc-
ities wirst and elast apply to the first and last rotations
along the path.

We can stipulate that the angular velocity is
constant over the time interval —h<t<0 and
tg <1 <{g+h We reduce the problem with angu-
lar velocity constraints into the previous case, creating
new quaternions and new constraints q(® = QO and
g"t) = QE+L, To compute QU let

G wﬁrst!
6 = h|wl
o = el
. cos(6/2)
QF = ( —sin(8/2) w ) Q!

To compute Q¥+, let

w = wiast’
0 = hwl
DT o
- cos
QF* ( sin(6/2) & )QK

Thus, the method involving angular velocity con-
straints is merely a renumbered version of the previous




method. We let ppin = 1 and pmax = 1, to add the two
points. These points are the two smaller dots in figure

8.

5 Numerical derivatives on the
3-sphere

There are three problems that typically arise when using
numerical methods to approximate derivatives on a mani-
fold. First, some derivative formulas are not centered - they
approximate the derivative, but not at the specified point,.
Secondly, there is a numerical accuracy problem — numerical
approximations of the derivative typically will not lie in the
tangent plane. Finally, there can be an aliasing problem,
particularly for paths which circumnavigate the sphere or
travel in tight loops. The aliasing problem greatly accentu-
ates the numerical accuracy problem.

We compute our numerical derivatives using the centered
three point formula for the second derivative shown in sec-
tion 4.3. To solve the aliasing problem, we must choose
n, the number of samples of ¢'® to be large enough so
that aliasing effects are not significant. To reduce alias-
ing, we suggest maintaining enough interpolation points
so that adjacent q(”)s do not travel more than +1/4 way
around the sphere, which can be tested via the condition
¢#) . ¢*t1) > 0. For instance, between antipodal keyframe
quaternions, two or more intervening interpolation points
are needed.

For the angular velocity constraint, a similar condition
suggests maintaining

[8] < /2.

This implies that we need n > Jd| tmax steps, where |d] is
the magnitude of the larger of the two angular velocities.

6 Implementing the discrete

derivative method

The most reliable way to implement the algorithm, whether
or not angular velocity constraints are used, is to use a con-
strained optimization package for sparse systems, such as the
MINQOS package [MURTAGH&SAUNDERS 83]. Any method
which solves for the q'¥) can be used, as long as it minimizes
E(q), subject to the constraints. By using first and second
derivatives of the energy function E(q), you can speed up
the solutions significantly.

An advantage of this approach is that the packaged al-
gorithms implement a robust convergence test, to determine
when the optimal solution is found.

6.1 Augmented Lagrangian constraints

If the implementer does not wish to use prepackaged algo-
rithms, a practical approach is to implement a variation of
the Lagrangian methods in [PLATT 88], using first-derivative
information. (We leave the implementation of faster meth-
ods, with quadratic convergence, as future work.)

First, you need the constraint function which keeps the
p-th quaternion on the unit sphere

gp(@) = P - qP) —1

Then construct a total energy F(q) by adding the constraint
and penalty terms

Pmax

FlQ)=E@+ Y A gp(a) +c¢ (g5(0)’

P=Pmin

and take its derivative with respect to qgr) and with respect
to Ar

a
Py ( ol Flq)= o¢ (T) q) + QZ Ap+¢) , where
(2" \ gy Mw\ww
('") ("')” (9‘” \ g) T) (Q’”\\ ) r41)
(r)? k2

9
If € [Prin + 1, Pmax — 1], the above equation is valid.
If r = pmin — 1, only the r 4+ 1 term applies and the others
are deleted; if 7 = pmin, the r + 1 and r terms apply, but
the first term is deleted; if ¥ = prayx + 1, only the first term
applies, while if 7 = pmax, the first three terms apply.
Then, set up the differential equations

d ( ) a
A LR
d T
L% = 0 r=p
d
E;Ar = +§=-(q)
and set up appropriate initial conditions:
(r) - i L smes - e
7 (0) = Q¢ r=p, i=1,---,K, £=0,1,2,3.
q_(;)(()) = interpolated values between the Qs, either
flat-space or results from previous runs with
smaller numbers of points. Better initial con-
ditions significantly improve the speed of this
method
Ap =

Numerically solve the differential equations with an au-
tomatic step-size method (such as Adams method), until
you reach sufficiently constant values. This heuristic “stop”
condition is why we advocate using packaged optimization
algorithms, which have robust stop conditions.

It is recommended that the program be structured so
that output from a smaller number of interpolated points
can be used to set up the initial conditions for a run with a
larger number of interpolated points.®

8You can also transform the variables in the differential equa-
tion via s = 14 1/(o — 1), essentially scaling the right hand side
by 1/(1 — ¢?). The solution will then be found at ¢ = 1, rather
than at s = co; you can iterate, numerically integrating the trans-
formed differential equation repeatedly from 0 to 0.999 until the
termination condition is reached.




7 Results

In the following figures, we show quaternion points visualized
in three dimensions: we chose quaternions with the k com-
ponent set to zero. Internally, of course, the implementation
is fully four dimensional. We implemented augmented La-
grangian constraints, as well as a prepackaged version. The
two methods agreed within the prescribed tolerances.

Figure 6a. Here we specify asymmetric angular velocity con-
straints, doubling until the path goes around the sphere.

Figure 4a. T'wo keyframe rotations, without angular velocity
constraints (shown as dots) on the interpolated path.

o - ; ,M \
‘;;*‘M“‘":! »

Figure 4b. The corresponding rotational path of the object.
The two yellow objects are the two keyframe rotations, while
the green images are the interpolated values. For clarity, we
draw only a subset of the interpolated values.

Figure 7a. Here we have seven keyframe quaternion points;
there are 199 interpolated points.

Figu

Iigure 5a. We go half-way around the quaternion sphere for
the same initial and final rotation, by choosing the antipodal
point, —Q'. We rotate more fully around in space.

Figure 5b. The rotational path of the object in 5a. Figure 8. Symmetric angular velocity constraints are applied
to the same endpoints in 4a. Note the two extra points, Q°
and Q™! drawn with smaller dots off of the curve.




Notes. In the figures, the keyframe quaternions are drawn
with larger dots, while the keyframe quaternions from the
angular velocity constraints are drawn with smaller dots.
Note the qualitative similarity with flat-space splines. The
banana rotates more in figure 5b than in 4b, due to the
antipodal representation of the left rotation. Since the algo-
rithm finds local minima, a different solution with a different
number of loops might turn out to be the absolute minimum.
The method, for large numbers of points, prefers good ini-
tial conditions, such as those produced by the algorithm with
fewer points.

For figures 7a and 7b, 32 interpolation points are used
in each interval, for a total of 199 points. The schedule of
increasing points in each interval was 5 = 8§ = 16 = 32.
The total computation time on an HP 700 was less than
four minutes.

8 Conclusions

We have presented a new technique to smoothly in-
terpolate rotations using quaternions. The method
uses an extrinsic version of Kajiya and Gabriel’s bend-
minimization to characterize a spline in the quater-
nion 3-sphere; such splines are natural generalizations
of splines in Euclidean space, and are particularly
amenable to solution on the 3-sphere. We use a numeri-
cal method to determine several points between the key
orientations; Shoemalke’s slerping can be applied to the
points; the resulting splines are smooth, and have the
desirable property that they pass through their control
points exactly.

QOur preliminary results are favorable, but there is
much that can still be done to improve on this tech-
nique. We believe that splining in curved spaces will
be of increasing importance to computer graphics, and
predict many future generalizations,

Acknowledgements

The the authors wish to thank Mark Montague, John
Snyder, David Laidlaw, and Jeff Goldsmith at the
Caltech graphics lab, as well as the Siggraph review-
ers, for numerous helpful suggestions. The banana
database is a generative model made by John Snyder
and Jed Lengyel. This research was supported by the
NSF/DARPA STC for Computer Graphics and Scien-
tific Visualization, and by grants from HP, IBM, DEC
and NCR to the university laboratories.

References

[1] R. Bartels, J. Beatty, and B. Barsky. An [ntro-
duction to Splines for Use in Compuier Graphics
and Geometric Modeling. Morgan Kaufmann, Los
Angeles, 1987.

[2] S. Gabriel and J. Kajiya. Spline interpolation in
curved space. In “State of the Art Image Synthe-
sis,” Course notes for SIGGRAPH ’85, 1985,

(3] W. R. Hamilton. Lectures on Quaternions. Hodges
and Smith, Dublin, 1853,

[4] D. Kochanek and R. Bartels. Interpolating splines
with local tension, continuity, and bias control.
Computer Graphics, 18(3):33-41, July 1984.

[5] R. S. Millman and G. D. Parker. Elements of
Differential Geometry. Prentice-Hall, Englewood
Cliffs, NJ, 1977.

[6] B. A. Murtagh and M. A. Saunder. MINOS 5.0
user’s guide. Technical Report SOL 83-20, Dept.
of Operations Research, Stanford University, 1983,

[7] Ltd Numerical Algorithms Group. NAG Fortran
library rcutine document, 1988.

[8] J. Platt. Constraint methods for flexible models.
Computer Graphics, 22(4):279-288, July 1988.

[9] W.H. Press, B.P. Flannery, S.A. Teukolskym, and
W.T. Vetterling. Numerical Recipes in C... Cam-
bridge Univ. Press, Cambridge, England, 1938.

[10] K. Shoemake. Animating rotation with quaternion
curves. Computer Graphics, 19(3):245-254, July
1985.

[11] M. Spivak. A Comprehensive Iniroduction to Dif-
ferential Geametry. Publish or Perish, Inc., Boston,
1970.

[12] D. Zwillinger. Handbook of Differential Equations.
Academic Press, San Diego, 1989.

Appendix A: Preprocessing Step to Cre-
ate Spin

First, convert the K rotation matrices into K quater-
nions (see Shoemake or other quaternion reference for
details). Then choose the desired spinning behavior of
the objects between the quaternions. Sometimes, the
object is desired to undergo an odd number of full spins
around on an interval (usually once). These will be the
“odd” intervals (and the other intervals are regarded
as “even,” which usually do not spin around). Mul-
tiplying a quaternion by —1 does not change the ori-
entation it represents, hut it does change whether or
not an even or cdd number of full-spins around the ob-
Ject takes place. The dot product of adjacent keyframe
quaternions should be greater than or equal to zero for
the even intervals, and less than zero for the odd ones.
Multiply the quaternion by by —1 to change the interval
from one state to the other.




