7 00
AT
o Y o
{ SR
PRE e
"\

uaternions are a nifty
way to represent rota-
tions in 3D space. You
can find many introduc-
tions to quaternions out
there on the Internet, so I'm going to
assume you know the basics. For a
refresher, see the papers by Shoemake or
Eberly in For More Information. In this
article we will look closely at the tasks of
quaternion interpolation and normaliza-
tion, and we’ll develop some good tricks.

Interpolation

hen game programmers want to
wmterpolate between quaternions,
they tend to copy Ken Shoemake’s code
without really understanding it {hey,
that’s what I did at first!). Ken uses a
function called slerp that walks along the
unit sphere in four-dimensional space
from one quaternion to the other. Because
it’s navigating a sphere, it involves a fair
amount of trigonometry, and is corre-
spondingly slow.

Lacking a strong grasp of quater-
nions, most game developers just accept
this: slerp is slow, and if you want
something faster, maybe you should go
back to Euler angles and all their nasti-
ness. But the situation is not so bad.
There'’s a cheap approximation to slerp
that will work in most cases, and is so
brain-dead simple and fast that it’s
shocking. Shocking, I tell you.

What Slerp Does

lerp is desirable because of two main
s properties; any approximation we
formulate would ideally have the same
properties. The first, and perhaps most
important, is that slerp produces the

www.gdmag.com

~& 1. A two-dimensional picture of
guaternion interpolation. The blue circle is
the unit sphere; the two yellow vectors are
the quaternions. The red arc represents the
path traveled by slerp; the green chord
shows the path taken by linear interpolation.

shortest path between the two orienta-
tions on that unit sphere in 4D; this is
equivalent to finding the “minimum
torque” rotation in 3D space, which you
can think of as the smoothest transition
between two orientations. The second
property of slerp is that it travels this
path at a constant speed, which basically
means you have full control over the
nature of the transition. (If you want to
add some style, like starting slowly and
then speeding up, you can just spline
your time parameter before feeding it
into slerp.)

So here’s our approximation: linearly
interpolate the two quaternions compo-
nentwise. That is, if ¢ is your time param-

o Jonathan blow [NNEEEEREEIEE

eter from 0 to 1, then x = xg + tx, —xp),
and similarly for y, z, and w.

One might wonder how that could
possibly be a worthwhile interpolation
when the right answer is so much more
complicated. Let’s take a look at why
that is.

Figure 1 shows a two-dimensional
version of quaternion interpolation,
Slerp walks around the edge of the unit
circle, which is what we want. Linear
interpolation results in a chord that cuts
inside the circle. But here’s the thing to
realize: Normalizing all the points along
the chord stretches them out to unit
length, so that they lie along the slerp
path. In other words, if you linearly
interpolate two quaternions from £ = 0
to t = 1 and then normalize the result,
you get the same minimal-torque transi-
tion that slerp would have given you.

The linear algebra way to see this is
that both the great circle and the chord
lie in Span{g,, q,), which is a 2D sub-
space of the 4D embedding space.
Adding the constraint that
Length(Interpolate(q,, q,, t)) = 1 reduces
the dimensionality to one, so both paths
must lie along the same circle. And both
forms of interpolation produce only a
continuous path of points between g,
and g, so they must be the same.

If g, and ¢, lie on opposing points of
the sphere, the chord will pass through
the origin and normalization will be
undefined. But that’s O.K. — unless
you’re doing something wacky, you don’

LU

that really isn't any fun.

1 Jou (jon@bolt-action.com) would like
yout to know that the Slimelight in London is a borrible nightclub

e e e oo oo

FIGURE 2 11

may appear at first. 1500 (i
atop the graph of Figure 2.

want your quaternions to be more than
90 degrees apart in the first place
{(because every rotation has two quater-
nion representations on the unit sphere,
and you want to pick the closest ones to
interpolate between). So the normaliza-
tion will always be well defined.

Thus the normalized linear interpola-
tion and the slerp both trace out the
same path. There is a difference between
them, though: they travel at differing
speeds. The linear interpolation will
move quickly at the endpoints and slowly
in the middle. Figure 2 shows a graph of
the worst case, 90 degrees.

The function graphed in Figure 2 is

roughly .
o, tsino
tan

1+t(cosa—1)

where 0. is the original angle between the
two quaternions. I figured this out just
by drawing a 2D graph like Figure 1,
where one of my vectors is the x-axis (1,
0) and the other one is (cos ¢, sin).
Then I just wrote an expression for lin-
early interpolating between them by ¢,
and then finding the resulting angle by
tan "', This rather simplistic approach is
valid for two reasons. First, since all the
action happens in Span(g,, g,), we can
just take that 2D cross section out of 4D
space; studying it in isolation, we see the
entirety of what is happening. Second, on
the resulting 2D unit circle, because the

14

. Worst case of lerp speed variation. The green line represents the ideal result
produced by slerp; the red line represents the distorted result produced by lerp. The error
between these two functions should be measured vertically, so they are more different than they
The compensating cubic spline, k = 0.45, shown in yellow

set of all possibilities for the two unit
vectors is redundant by rotational sym-
metry, we can choose one of the vectors
to be anything we like; I chose (1, 0) to
simplify the math.

Casey Muratori of RAD Game Tools
is the first person I know of who consid-
ered linear interpolation of quaternions
as a serious option. He investigated
numerically and found linear interpola-
tion, when properly employed, to be
quite worthwhile. Casey has eradicated
all slerps from his code for Granny 2.

Augmenting Linear
Interpolation

he linear interpolation is monotonic

Tfrom g, to gq,, so if you are doing an
application where you’re binary search-
ing for a result that satisfies some con-
straint, using the linear interpolation
works just fine. If your quaternions are
very close together (less than 30 degrees,
say), as you have when playing back a
series of time-sampled animation data,
linear interpolation works fine. And if
you have some number of different char-
acter poses (like an enemy pointing a gun
in several different directions), and you
want to mix them based on a blending
parameter, linear interpolation probably
works fine.

Linear interpolation won’t work if you

need precise speed control and wide
interpolation angles. But maybe we can
fix that.

Perhaps we can make a spline that can-
cels most of the speed distortion. Looking
at Figure 2, can we concoct a function
that, when multiplied against the curve,
causes it to lie much closer to the ideal
line? The way I chose to visualize this
was with a cubic spline that tries to pull
the distortion function onto the diagonal.
Figure 3 shows a cubic spline with the
equation y = 2k — 3k + (1 + k)t, where
the tuning parameter £ = 0.45 has been
graphed against the plot of Figure 2.

Because both the distortion curve and
our compensating spline have an average
value of £ and are approximately comple-
mentary, when we multiply them togeth-
er we get a function that is approximate-
ly g(t) = £*. We want g(t) = t, so we’'ll
divide the cubic spline by . Forrunately,
since the spline passes through the origin,
it has no d coefficient; so dividing by ¢
just turns it into a quadratic curve:
y=2kt' =3kt +1+k.

So now, if we’re linearly interpolating
two splines that are 90 degrees apart, we
find ¢" = 2kt" — 3kz + 1 + b, and use ¢’ as
our interpolation parameter. We get
something very close to constant-speed
interpolation (I will quantify how close
in a little bit). However, if we reduce the
angle between the input quaternions, we
get something that’s less accurate than
the original .

That’s because, by defining its slope at
t=0and ¢ = 1, I concocted this spline
specifically for the worst-case scenario.
That’s where the & parameter comes in:
it’s a slope-control mechanism. To get this
spline to compensate for distortion across
the full range of quaternion input angles,
we want to adjust the tuning parameter
as some easily computable function of the
angle between the two quaternions.

Well, taking the dot product of two
quaternions gives us cos 0., the cosine of
the angle between them. I started playing
around with simple functions of cos o
until I found something reasonable.
Basically, we want a function that is 1
when cos o = 0, and that is near 0 when
cos & = 1. After some experimentation I

march 2002 | game developer

Sh

} #0 2
LithT
arep

——

=32

FIGURE 4 t'opi. In green, the function
fix1=1/x in yellow, its tangent line at x=1.
FIGURE 5 +. The length of an approxi-
mately normalized vector (yellow). versus the
squared length of the input. when using the
naive tangent line approximation. The green
line indicates the ideal result.

landed on k = 0.45(1 — s cos @), where
s = 0.9 for now. To cursory Visual inspec-
tion, this gives pretty good results across
the full range of & from 0 to 90 degrees.

These numbers are in the right neigh-
borhood, but because I just made them
up, they’re not going to be as close as we
can get. So I wrote some code to do hill-
climbing least-squares minimization. The
initial distortion function has an RMS
error of about 1.6 107 when averaged
over all interpolation sizes (the worst
case, graphed in Figure 2, has an RMS
error of 3.234 « 107%). The minimizer
gave me the following values:
k= 0.5069269, s = 0.7878088, yielding
an overall error of 2.07 » 107, which is
about eight times lower than we’d started
with (see Listing 1).

But while I had been aligning things by
eye, I noticed that if I gave k a high
value, I got results that were close to
exact from £ = 0 to t = 0.5, but diverged
after t = 0.5. So [wrote an interpolator
that only needs to evaluate # from 0 to

16

0.5. If you pass in a ¢ higher than 0.5, it
just swaps the endpoints of interpolation.
Running the optimizer on this, I got
k=0.5855064, s = 0.8228677, overall
error 5.85 « 107 — a reduction of more
than 27 from the original. We incur
another small cost to gain this accuracy,
an extra if statement.

You can probably do better than these
numbers; my methods were ad hoc, and
there are many possibilities I haven’t
explored. I should also give a few warn-
ings. For example, the if statement [just
mentioned introduces a slight disconti-
nuity at t = 0.5; you can fix this discon-
tinuity by shifting the midpoint away
from 0.5, but this wasn’t important for
my needs.

So we can interpolate pretty quickly
now, but we end up with non-unit
quaternions. We probably want unit
quaternions, so how do we normalize
without doing a really slow inverse
square root operation?

Normalization

o normalize any vector, quaternions
Tincluded, we want to divide the vec-
tor by its length. The squared length of
some vector v is cheap to compute —
it’s v-v — so we need to obtain 1/+v-v
and multiply the vector by that.
Division and square-rooting are pretty
expensive, though.

We can compute a fast 1/ Jx by using
a tangent-line approximation to the func-

tion. This is like a really simple one-step
Newton-Raphson iteration, and by tun-
ing it for our specific case, we can
achieve high accuracy for cheap. (A
Newton-Raphson iteration is how spe-
cialized instruction sets like 3DNow and
SSE compute fast inverse square root).

The basic idea is that we graph the
function II\F locate some neighbor-
hood that we’re interested in, and pre-
tend that the function is linear there. A
linear function is cheap to evaluate.

So, we want to approximate
flx)=1Jx. We are interested in vectors
whose lengths are somewhere near 1,
meaning f{x) = 1, which means x = 1. So
we are going to focus on the neighbor-
hood x = 1, as you see in Figure 4. To get

the line, we just take the derivative of f,
1 3

o= w2
/ 2 , and evaluate it at 1:
1
T
£ >

An equation that says “locally, a func-
tion is approximately its value at some
point plus its first derivative extrapolat-
ed over distance” is:

flx+ Ax) = f(x) + Axf(x)

We evaluate this at x = 1 to get
1

flL+ ax) = Q)+ Axf (1) = 1= o

Now for the last trick: we want to rep-
resent the squared length of our input
vector, which we’ll call s, as a value in
the neighborhood of 1, so we can plug it

LISTING 1. A function that splines ¢ to compensate for the distortion induced by lerping.

march 2002 | game develaper

into our new linear function. We say
s=1+ Ax, and thus Ax =s - 1.

That is all we need. When we plug
Ax = s - 1 into our approximation, we
get

fl+s-1)= 1—%(5—1)

Simplified, this says:
=369

For as wide of a neighborhood as the
inverse square root is well approximated
by a tangent line, this extremely fast
computation will give us the factor to
normalize a vector. Figure 5 graphs the
vector lengths we get when we use this
computation to normalize. As long as we
start with a vector whose length is near
1, we get results that are fairly accurate.
For some applications, accuracy in a
narrow range is all we need. If you are
reconstructing quaternions from splines,
as one might do in a skeletal animation
system that stores animation data in a
small memory footprint, you can ensure a

LISTING 2. A fast normalizer.

maximum length deviation during the
spline-fitting process (inserting extra
keyframes to alleviate any problems).
Then at run time you just evaluate the
splines and pump the coefficients into this
one-step normalizer, and you can be
assured that the results are good.

On the other hand, this isn’t good
enough to use blindly on the results of
quaternion linear interpolation. We can
see that, during our worst-case interpola-
tion from (1, 0} to (0, 1), the closest we
get to the origin is (1/2, 1/2), which gives
us a squared vector length s = 1/2. So for
good results after lerping, we need a fast
normalizer that produces good results all
the way through the interval from s = 1/2
tos=1.

Retuning the Tangent
Line Approximation

when we linearly interpolate quater-
nions, we get a chord that cuts

through the unit sphere; that is, the result-

18

ing length is always less than 1. So we
don’t need our linear approximation to be
accurate above 1. We can, in effect, slide
the graph of Figure 5 to the left a little bit,
making our approximation more effective
for shorter vectors,

Also, if we are going to permit some
small amount of error € in our result, it
probably makes sense to allow results in
the range 1 * &, instead of just 1 — & as in
Figure 4. So we can scale the approxima-
tion by some small factor. This roughly
doubles the zone of good results.

But this still doesn’t cover the full range
from 1/2 to 1. A simple solution would be
to just check the value of 5, and if it is too
low, just compute the answer the slow
way. For most applications, wide-angle
interpolations will be extremely rare, so
the speed hit will be small. But if you need
to be faster than that, there are some
hackish things we can do.

['wrote some code that repeatedly
applies the fast normalization, tuned by
some optimization parameters, in order to
achieve the least error across the interval
we are interested in. Running the numeri-
cal optimizer on this yields Z I
0.959066, scale = 1.000311, and a root-
mean-square error of 2.15 x 10™. This
loop only iterates at most three times over
the interval we care about, so you can re-
phrase the loop ‘as a small series of nested
if statements, which are mostly never
descended into (see Listing 2).

Sample Code

This month’s sample code implements
fast linear interpolation and renor-
malization, as well as the numerical opti-
mization code that computes the best
parameters. Download it from
www.gdmag.com, &

FOR MORE INFORMATION
Eberly. David. “Quaternion Algebra and Calculus.,
www magic-software.corm/Documentation/
quat.pdf

Shoernake, Ken. “Animating Rotation with
Quaternion Curves,” Computer Graphics Vol,
19, No. 3 [July 1985),

march 2002 [game developer

T

