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Abstract

Wherein we discuss the orthogonal decomposition of skew sym-
metric n X n matrices. For low dimensions (n < 5), explicit closed
formulae are given. As an application, we give formulae for comput-
ing the exponential of a skew symmetric matrix, and the logarithm of
a rotation matrix.

1 Notation and formulae

Let - denote the standard Euclidian inner product on R”, and let || denote
Euclidian norm; so that for any u € R”, we have u-u = [u|?.

For u,v € R", define the outer product of u and v to be the endomor-
phism u ® v : R®* — R™ given by the rule!:

(u®v)(w) = (v w)u,

for all w € R". And define the wedge (or exterior) product of u and v
to be the endomorphism

UAV=URV—VvE®u.

For u,v,w € R® one finds that (u A v)(w) = —(u x v) x w, where x
denotes the usual cross—product on R®. More generally, the components of

1The use of the symbol ® here is a little misleading: the outer product is not the tensor
product of u with v, rather it is the tensor product of u with the dual of v.
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the skew—symmetric matrix u A v are the Pliicker coordinates in R(»—1n/2 of
the 2-plane spanned by u and v.

Theorem 1.1. For allm,n,u,v € R” and o, 3,7,0 € R,
i (m@n)o(u®v)=n-uUymev
ii. ([aPIVP = (a-v)?) projyy = [vPugu—(u-v)(u@v+veu)+ fuPvey
i (uAV)E=—(luff|v]? — (u-v)?) proj,,
w. (uAV)E=—(JufvP - (u-v)>)urv
v. (au+Bv)A(yu+6v) = (ad - fy)uAv,

where proj,, denotes the orthogonal projection map onto R{u,v}, the 2-
plane in R™ spanned by u and v.

Proof. Compute! O

In general, the Lie algebra so(n) of n x n skew symmetric matrices has
an inner product given by

f - 9= ytrace(f'g),

for f, g € so(n), where f* is the adjoint (transpose) of f. Since this definition
amounts to the Euclidian inner product on R™~17%/2) the inner product is
positive definite. In particular, u A v € so(n), and from theorem 1.1(iii) it
follows by taking traces that

luAvVE=(uAv)-(uAY) = [u}jv]? - (u- v)? (1)

(recall that the trace of an orthogonal projection onto a subspace is equal to
the dimension of that subspace). Thus [u A v| = |u||v|sin 8, where 8 is the
angle between the vectors u and v.

2 Decomposability and simple rotations

2.1 Two—planes and decomposability
Theorem 2.1. The vectors u,v span a 2-plane if and only if u Av # 0.
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Proof. uAv = 01if and only if [u A v| = 0; however the |u A v| = 0 if and
only if [u[ = 0, |v[ = 0, or the angle between u and v is a multiple of 7. [J

An orientation of the 2-plane R{u,v} is a choice of ordering of the
vectors u, v. We write R(u, v) to denote the 2-plane R{u, v} along with the
orientation u < v. For any other vectors a,b € R(u, v), say a = au + v
and b = yu+4v, we may then write a < b if they have the same orientation
as u,v; ie, if ad — By > 0. From theorem 1.1(v), we have the following.

Theorem 2.2. Suppose R(u, V) is an oriented 2-plane, and a, b € R(u,v).
Then a <b if and only if (u Av)-(aAb) > 0.

We will say that an endomorphism f : R®™ — R” is decomposable if
f=uAv for some u,v € R*. Observe that if f = uA v is non-zero, then
image of f is the 2-plane image(f) = R{u,v}. Moreover, there is a natural
orientation for this 2-plane; namely if a, b € image(f), then a < b provided
that f-(aAb) > 0.

Theorem 2.3. The map f ~ image(f) gives a one—to—one correspondence
between the set of all unit decomposable endomorphisms of R™ and the set of
all oriented 2-planes in R™,

Proof. The inverse map is given by R{u,v) — uAv/|uAv|. Details are left
to the reader. 7

Theorem 2.4. The 2-planes R{u,v} and R{m,n} are orthogonal if and
only if (WA v)o (mAn)=0.

Proof. Using theorem 1.1(i) we compute: (uAv)o (mAn) = (v -mu®
n—(v-nju®m-—(u-myvaen+ (u-n)v®m, which is zero if R{u, v}
and R{m,n} are orthogonal. Conversely, if (u A v) o (m A n) = 0, then
DT0] yy © PT0] oy, = O by theorem 1.1(iil); it follows that R{u, v} and R{m,n}
are orthogonal. ]

2.2 Simple rotations

The Lie group SO(n) consists of all endomorphisms f : R® — R" that
preserve the inner product: f(u)- f(v) = u-v for all u,v € R*, and have
unit determinant det(f) = 1. Geometrically, SO(n} is the group of rotations



in R". Tt is well known that exponentiation gives a surjective map from so(n)
to SO(n):

L 1
exp : so(n) = SO(n), exp(f) =) = f*.
k=0 """
For a decomposable endomorphism, equations (iii) and (iv) of theorem 1.1

can be used to give closed formula for its exponential.

Theorem 2.5. For all u,v € R”,

sin [u A v|

uAv.
fu A v

exp(u A v) = id — (1 — cos [u A v]) proj ., +

Theorem 2.6. exp(u A v} is counterclockwise rotation by an angle |u A v|
in R(u,v), and is the identity in the orthogonal complement to R{u,v}.

Proof. Choose a,b € R{u,v} witha < b,a-b=0and |a| = |b| =1 (so
that |a Ab| =1). By theorem 1.1(v), uAv = |Ju Av|aAb. Thus

exp(u A v)(a) =cos|juAvia—sin|uAv|b
exp(uA v)(b) =sin|uAvla+cosjuAvlb

by theorem 2.5. Moreover, if w is orthogonal to R{u,v}, then we have
exp(u A v)(w) = w, also by theorem 2.5. 0O

We will call a rotation R € SO(n) simple if there is a 2-plane P C R
such that (1) P is stable under R: R(P) = P, and (2) the orthogonal
complement of P is fixed by R: if v € P+, then R(v) = v. Theorem 2.6 says
that the exponential of a decomposable endomorphism is a simple rotation.

Theorem 2.7. If R € SO(n) is a simple rotation, then R = exp(f), for
some decomposable f € so(n). In fact, we may take

g

_ pt
2Sin9(R ),

f=

where § = cos™ Z(trace(R) — n + 2).

Proof. First, we may choose a coordinate system for R™ such that R
(cosb —sinf) @ id, o, where id,_, is the identity on R 2 and 0 < 4 <

sinf cosf

Thus R = exp(f), where f = —6(1,0,...,0) A (0,1,0,...,0).
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Second, write f = u A v. Observe that id and Projyy are self-adjoint
(symmetric), while uA v is skew—symmetric; thus exp(uAv) — exp(u Av)t =
(2sin ju Av|/lu A v[)u A v, by theorem 2.5. Also by theorem 2.5, we have
trace(exp(uAv)) = 2 cos [uAv|+n—2; the formula in the theorem follows. [I

We remark that from the first part of proof of theorem 2.7, we see that the
formula for the logarithm of a simple rotation always yields a decomposable
endomorphism f whose associated 2-plane P is oriented in such a fashion
that exp(f) is counterclockwise rotation in P by an angle less than 7.

In two and three dimensions any rotation is necessarily simple and any
skew—symmetric endomorphism is necessarily decomposable. Theorems 2.5
and 2.7 thus give a complete recipe for the exponential and logarithm maps
in these dimensions. It should be noted that in three dimensions, R — R! is a

multiple of the endomorphism Ay, where Ay(v) = u x v, and u is the axis of
0 —u; u
rotation for R. In matrix form Ay = (w0 —gz), where u = (uy,u,, u,);
—Uy Ug

thus the components of the axis of rotation can be read off directly from the
matrix R — Rt

2.3 Digression: reflections

Reflection in the hyperplane orthogonal to u € R" is the unique endomor-
phism 7y : R* — R which satisfies ry(u) = —u, and ry(v) = v for all
v orthogonal to u. We can give an explicit formula in terms of the outer
product of two vectors:
: u®u

Tu = id — QW (2)
It is well-known that the compositions of two reflections is a rotation, and
in fact, a simple rotation. Indeed, computing using theorem 1.1i and 1.1ii,

we get the following.
Theorem 2.8. Ifu,v € R™ are nonzero, then

2uAaviz +2(u-v) "

Ty = TE Pt e

Comparison with theorem 2.5 then yields the following.



Theorem 2.9. For all nonzero u,v € R?, ry o7y is a simple rotation, and

we have
uA
Ty ©Ty = exp (26—-—|u p :])

where § = cos™((u - v)/[u] |v|).

Note that the angle of rotation is twice the angle between u and v, as one
expects from the three dimensional case.

3 Strongly orthogonal decomposition

We will say that two endomorphisms £, g € so(n) are strongly orthogonal
if fog=0. Since f-g = lirace(ftg) = —3trace(fg), strong orthogonality
implies orthogonality. However, the converse is not true. For example, let e,
(1 <i < n) denote the standard unit vectors in R™: at index i the value is
unity, and all other indices the value is zero; then (e; Aey)- ((eq +e3)Ae;) = 0,
but (e1 A ez) o ((e1 + e2) Aes) # 0. :

Theorem 3.1. Euvery element of so(n) can be expressed as the sum of at
most n/2] strongly orthogonal decomposable endomorphisms.

Proof. We view f € so(n) as a skew—hermitian matrix over C", so that dis-
tinct eigenvectors are orthogonal, and eigenvalues are pure imaginary. Given
a nonzero eigenvalue iA; (A; € R) with corresponding unit eigenvector v,
then —i); is also an eigenvalue with corresponding unit eigenvector ¥. In
this case, set X3 = (v+¥)/v2 and ¥} = (v — V)/iV2; thus X,,Y; € R™,
lel =1= le|, Xl : Y'l = O; f(Xl) = —-A1Yi, and f(Yi) = ’\IXI- Then
fi = f = MXi AY4, is such that fi(X;) =0 = f1(Y1). The construction
can be repeated at most a total of [n/2] times before the trivial map is
obtained. i

The construction used in the above proof requires us to find (complex—
valued) eigenvalues and eigenvectors. Computationally, this can be difficult;
one of our goals is to give an alternate way of finding a strong orthogonal de-
composition of a skew-symmetric endomorphism. Let us note however, that
such a decomposition is not necessarily unique. For example, the endomor-
phisms f = e; Ae; +e;3 Aeq admits the alternate strongly orthogonal decom-
position fi+f,, where f1 = 1(e;+e3)A(ey+eq) and fo = s(e1—e3)A(ea—ey).



3.1 Multiple decomposability

We define an endomorphism f € so(n) to be g—decomposable if we can
write f as the sum of exactly ¢ strongly orthogonal decomposable endomor-
phisms of the same length; i.e., f = fi+---+ f,, where |f;| = ... = |f,l, and
Jiof; =0fori#j.

Theorem 3.2. Suppose f € so(n) is g-decomposable. Then

. 2 .
i = o,

i fo=-Ly,
where proj; 1s orthogonal projection onto image(f).
Proof. Write f = fi+---4 f;,andset = |fy] =--- = |fe|- From theorem
1.1(iii) and strong orthogonality, we have f2 = —§2 t=1P70] ;. Thus |f|? =
—3trace(f?) = g6, Equation (ii) follows from theorem 1.1(iv). O

Theorem 3.3. For each f € so(n), we may write f = fi+ -+ fn, where
m < [n/2], each fi is gy—decomposable, and if i # J, then fio f; = 0
and |fi|*/a; # |fi]*/a;- This decomposition is unique up to reordering of
summands.

Proof. For existence, we use theorem 3.1 and group together summands with
the same length. For uniqueness, set z = |fx|*/gr. Theorem 3.2 then implies
P = (=1)P 3701, 2L fy for integers p > 0, from which we obtain the formal
matrix equation

1 L sme § 71 i
T1 o f2 i
- . : - : (3)
:6.7171.—1 $£n_l o mm—l fm (_1)m—1f2m—-1

The m x m matrix on the left is a Vandermonde matrix, and is well-known
to have determinant [], .(z; — ;). Since z; # z; for i # j (by construction),
equation (3) is invertable. O



3.2 Finding a strongly orthogonal decomposition

Given f € so(n), we wish to find the strongly orthogonal decomposition
stated in theorem 3.3: f = fi+ -+ fn. In fact, the proof of that theorem
essentially gives a way of doing this. Observe that from theorem 3.2, we have

= (-1 2fproj,, (4)
k=1

for integers p > 1, where zx = |fi[*/gk (gx is the multiplicity of fx). Taking
traces and rearranging slightly, we get the equations

3 aaf = S trace( ) ®)
k=1

for 1 < p < m. Thus if we can solve these (nonlinear) equations for
(z1,...,Zm), then we can invert equation (3) to get fi,..., fn. We remark
that a special numerical method exists for solving Vandermonde equations
such as equation (3), see [NRC].

We do not usually know a priori the value of m, or the multiplicities G
(1 £ k < m); however, we may deduce them as follows. First we solve the
equations (5) assuming (for the moment) that m = |n/2] and each g = 1
which will give us |n/2] numbers (zi, ... »Tlps2))- Next we remove all zeros
and duplicate values to form a new list (z1,...,Z,). The length of this list
is our desired value of m, and the number of times the value z; occurs in the
original list gives the multiplicity g;. Note that the new list (e, T )38
necessarily a solution of equations (5).

3.2.1 Solutions for low dimensions

We give an explicit solution to the recipe given above in the case m = 2; i.e.,
assuming that f € so(n) can be written as a sum f = f; + f, of two strongly
orthogonal multiply decomposable endomorphisms. In this case, the system
of equations (5) can be solved explicitly: one finds the solution z; = z_ and
T3 = I., where




where § = q1 + g2, 7 = g2/q1, and g is the multiplicity of f. Equation (3) is
then be inverted to give

h= : (z2f +/%) and fo=- ! (@ f + £ (7)

Ig — X1 Ta2 — X1
In particular, this completely solves the decomposition problem in dimensions
n = 4,5: assume that ¢ = g = 1 (so that § = 2 and 7 = 1) and apply
equation (6); if z2 = 0, or if 4trace(f*) — trace?(f?) = 0, then f must be
multiply decomposable with multiplicity 1 in the former case, 2 in the latter.

4 Exponentials

It is a fact that exp(f) o exp(g) = exp(f + g) only if f and ¢ commute; and
in particular, when f, g € so(n) are strongly orthogonal. We exploit this fact
to obtain a method for computing the exponential map.

Theorem 4.1. Suppose f € so(n), and let f = fi + -+ f., be a strongly
orthogonal decomposition of multiply decomposable endomorphisms, then

- in
exp(f) = id — Z ((1 — cos Bk )proj 5, — Slzk kfk) ,

k=1

where O = | fi|//T and g is the multiplicity of fr.

Proof. By strong orthogonality, (Ek fe)? = 3. (f)P. The equality now
follows by computation using theorem 3.2. O

Thus to compute the exponential of f € so(n), we may first decompose
f into a sum of strongly orthogonal multiply decomposable endomorphisms:
f=fi+ -+ fm Then we may then apply theorem 4.1 to compute exp(f).
However, to minimize the powers of f used, it is actually better to invert
equations (4) for 1 < p < m (also a Vandermonde matrix equation) to
obtain the projections used in theorem 4.1.

4.1 Exponentials in low dimensions
The case when f € so(n) is multiply decomposable (so that m = 1), theorems
4.1 and 3.2 imply that

., , sind 1—cosf
exp(f) = id + == f + 1%, (®)
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where § = |f|/./g and ¢ is the multiplicity of f. Note that in dimension
n=2, f2=—0%d and g = 1.

Now consider the case m = 2: f = f, + f,, where fi, f, are strongly
orthogonal multiply decomposable endomorphisms. We already know that
f1 and f, are given by equations (6) and (7). Moreover, by inverting the
equations (4), we find that

e 2, 4
projfl - 55'1(552 - 3:1) (fo * f ) (9)
. 1 2, p4
proj s, = m(mlf L )k
These equations, equation (7), and theorem 4.1 then imply that
. 1
exp(f) = id + ——(Af + Bf*+ Cf*+ Df*), (10)

where z,, 2, are as in equation (6) and the coefficients are given by

4o T2 sin\/Zy  sin/Z; e z3(1 —cos/Z1)  21(1 — cos /%)

\/.’.1','—1 A/ L2 ! I To
. sin\/z; sin/T; . 1—cos\/z;y 1—cos /z;
C= - ) D= - '
/L1 /Ly I3 To

In the special case n = 4, we have a slightly simpler formula. In this case,
projy, + projs, = 1d, so that equation (10) may be written as

op(f) = - (Bid+ Af + Ff* + CFY), (11)

where z1, > are again as in equation (6), and the coefficients are given by

E = (zyc08 /21 — 21 c08y/Z2), and F = cos+/T] — cos/7;
with A, C' as above.

5 Logarithms

To compute the logarithm of R € SO(n), we find m multiply decomposable
endomorphisms f1,..., fm, each strongly orthogonal to the other, such that
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R = exp(fi + -+ + fm). Since the identity and projection mappings are
symmetric, while a decomposable endomorphism is antisymmetric, theorem
4.1 implies

Y- Sin 6y

k=1

where 0 = | fi|/\/@ and fi has multiplicity . Moreover, by strong orthog-
onality and theorem 3.2, we get

__ Dt\ 2p m
(R ZR) =(—1)1"Zsinzf’f?,y“'of.'"oj}c (12)
k=1
R — R\ #! "\ sin®?1 g
( : ) S (13)
k=1 k

for integers p > 1. In particular, equation (12) implies

m _1\p _ pt\ 2p
;gkyﬁ:( 21) lrace (R ZR) (14)

for all p > 1, where 9 = sin? 6.

We may use equations (13) and (14) to find our strongly orthogonal de-
composition in so(n). Namely, we first find a solution (¥1,-.-,Ym) to the m
equations (14) with 1 < p < m. Using this solution, we invert the formal
matrix equation formed from equations (13) for 1 < p < m (which may be
cast into a Vandermonde matrix equation) to obtain f = 4+ fn.

On the other hand, the above solution, as it involves inverting the sine
function to obtain 8, is only valid for a compound rotation composed of
simple rotations by angles less than #/2. With a little more work, it is
possible to do better. Using theorem 4.1, it is possible to show that

m . 9
RP = id + Z (su;p B~ (1- cosp&k)pmjk)
k

k=1

for all integers p > 0. Consequently since f; is antisymmetric, for such p we
have

o 1 =
,?:1’ gk COS POy, = = (trace(R”) —n+ 2;1 qk) (15)
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We may now use these equations, for 1 < p < m, in conjunction with equation
(13) to find a strongly orthogonal decomposition for log(R). Note that since
cosnd = 2cos (n — 1)8 cosf—cos (n — 2)6 for n > 2, cos pfy, can be expressed
as a polynomial of degree p in z; = cosfy; so solving equations (15), with
1 < p < m, amounts to solving a system of algebraic equations.

5.1 Low dimensional formulae

Suppose R € SO(n). If m = 1, then we obtain the same formula for log(R)
as in theorem 2.7: f = (6/2sin6)(R — R’), except with § now given by
8 = cos™ 1(trace(R) — n + 2q) /2, where ¢ is the multiplicity of f.

In the case m = 2, the system of equations (15) can be recast in the form

Q121+ Q22 = 3 (trace(R) —n) +6 and @122 + qozs = 1 (trace(R?) — n) + 4,

where 2, = cos and § = ¢, +¢. These equations have the solution z; = Zy,
zp = Z_, where

By = %(tmce(R) —n+25 +VH),

H= n(étmce(Rz) — trace(R)? + 2(n — 26)trace(R) + 3nd — nz)?

(16)

with § = ¢ + g2 and 7 = ¢2/q1. The strongly orthogonal decomposition for
log(R) = f1 + f2 is then given by

b 1 ., R—R*  R—R,
hi= sin #; sin® 6, — sin? 8, (sm 02 2 + 2 ) (a7
6, 1 .., R-R R—R',
- 6
f2 sin 05 sin? 6, — sin® 6 (sm Y +( 2 )

where 0;, = cos™!(z) (k= 1,2).
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