Exponential and logarithm maps for orthogonal groups

jason hanson DigiPen Institute of Technology

June 22, 2006

Abstract

Wherein we discuss the orthogonal decomposition of skew symmetric $n \times n$ matrices. For low dimensions $(n \leq 5)$, explicit closed formulae are given. As an application, we give formulae for computing the exponential of a skew symmetric matrix, and the logarithm of a rotation matrix.

1 Notation and formulae

Let \cdot denote the standard Euclidian inner product on \mathbb{R}^n , and let $|\cdot|$ denote Euclidian norm; so that for any $\mathbf{u} \in \mathbb{R}^n$, we have $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$.

For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, define the outer product of \mathbf{u} and \mathbf{v} to be the endomorphism $\mathbf{u} \otimes \mathbf{v} : \mathbb{R}^n \to \mathbb{R}^n$ given by the rule¹:

$$(\mathbf{u} \otimes \mathbf{v})(\mathbf{w}) \doteq (\mathbf{v} \cdot \mathbf{w})\mathbf{u},$$

for all $\mathbf{w} \in \mathbb{R}^n$. And define the wedge (or exterior) product of \mathbf{u} and \mathbf{v} to be the endomorphism

$$\mathbf{u} \wedge \mathbf{v} \doteq \mathbf{u} \otimes \mathbf{v} - \mathbf{v} \otimes \mathbf{u}$$
.

For $u, v, w \in \mathbb{R}^3$, one finds that $(u \wedge v)(w) = -(u \times v) \times w$, where \times denotes the usual cross-product on \mathbb{R}^3 . More generally, the components of

¹The use of the symbol \otimes here is a little misleading: the outer product is not the tensor product of \mathbf{u} with \mathbf{v} , rather it is the tensor product of \mathbf{u} with the dual of \mathbf{v} .

the skew–symmetric matrix $\mathbf{u} \wedge \mathbf{v}$ are the Plücker coordinates in $\mathbb{R}^{(n-1)n/2}$ of the 2-plane spanned by \mathbf{u} and \mathbf{v} .

Theorem 1.1. For all $m, n, u, v \in \mathbb{R}^n$ and $\alpha, \beta, \gamma, \delta \in \mathbb{R}$,

i.
$$(m \otimes n) \circ (u \otimes v) = (n \cdot u) m \otimes v$$

$$\mathit{ii.} \ \left(|\mathbf{u}|^2 |\mathbf{v}|^2 - (\mathbf{u} \cdot \mathbf{v})^2 \right) \mathit{proj}_{\mathbf{u}\mathbf{v}} = |\mathbf{v}|^2 \mathbf{u} \otimes \mathbf{u} - (\mathbf{u} \cdot \mathbf{v}) (\mathbf{u} \otimes \mathbf{v} + \mathbf{v} \otimes \mathbf{u}) + |\mathbf{u}|^2 \mathbf{v} \otimes \mathbf{v}$$

iii.
$$(\mathbf{u} \wedge \mathbf{v})^2 = - \left(|\mathbf{u}|^2 |\mathbf{v}|^2 - (\mathbf{u} \cdot \mathbf{v})^2 \right) \mathit{proj}_{\mathbf{u}\mathbf{v}}$$

iv.
$$(\mathbf{u} \wedge \mathbf{v})^3 = -(|\mathbf{u}|^2|\mathbf{v}|^2 - (\mathbf{u} \cdot \mathbf{v})^2) \mathbf{u} \wedge \mathbf{v}$$

v.
$$(\alpha \mathbf{u} + \beta \mathbf{v}) \wedge (\gamma \mathbf{u} + \delta \mathbf{v}) = (\alpha \delta - \beta \gamma) \mathbf{u} \wedge \mathbf{v}$$
,

where $proj_{\mathbf{u}\mathbf{v}}$ denotes the orthogonal projection map onto $\mathbb{R}\{\mathbf{u},\mathbf{v}\}$, the 2-plane in \mathbb{R}^n spanned by \mathbf{u} and \mathbf{v} .

In general, the Lie algebra so(n) of $n \times n$ skew symmetric matrices has an inner product given by

$$f \cdot g \doteq \frac{1}{2}\operatorname{trace}(f^t g),$$

for $f,g \in \mathrm{so}(n)$, where f^t is the adjoint (transpose) of f. Since this definition amounts to the Euclidean inner product on $\mathbb{R}^{(n-1)n/2}$, the inner product is positive definite. In particular, $\mathbf{u} \wedge \mathbf{v} \in \mathrm{so}(n)$, and from theorem 1.1(iii) it follows by taking traces that

$$|\mathbf{u} \wedge \mathbf{v}|^2 = (\mathbf{u} \wedge \mathbf{v}) \cdot (\mathbf{u} \wedge \mathbf{v}) = |\mathbf{u}|^2 |\mathbf{v}|^2 - (\mathbf{u} \cdot \mathbf{v})^2 \tag{1}$$

(recall that the trace of an orthogonal projection onto a subspace is equal to the dimension of that subspace). Thus $|\mathbf{u} \wedge \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$, where θ is the angle between the vectors \mathbf{u} and \mathbf{v} .

2 Decomposability and simple rotations

2.1 Two-planes and decomposability

Theorem 2.1. The vectors \mathbf{u}, \mathbf{v} span a 2-plane if and only if $\mathbf{u} \wedge \mathbf{v} \neq 0$.

Proof. $\mathbf{u} \wedge \mathbf{v} = 0$ if and only if $|\mathbf{u} \wedge \mathbf{v}| = 0$; however the $|\mathbf{u} \wedge \mathbf{v}| = 0$ if and only if $|\mathbf{u}| = 0$, $|\mathbf{v}| = 0$, or the angle between \mathbf{u} and \mathbf{v} is a multiple of π .

An orientation of the 2-plane $\mathbb{R}\{\mathbf{u},\mathbf{v}\}$ is a choice of ordering of the vectors \mathbf{u},\mathbf{v} . We write $\mathbb{R}\langle\mathbf{u},\mathbf{v}\rangle$ to denote the 2-plane $\mathbb{R}\{\mathbf{u},\mathbf{v}\}$ along with the orientation $\mathbf{u}<\mathbf{v}$. For any other vectors $\mathbf{a},\mathbf{b}\in\mathbb{R}\langle\mathbf{u},\mathbf{v}\rangle$, say $\mathbf{a}=\alpha\mathbf{u}+\beta\mathbf{v}$ and $\mathbf{b}=\gamma\mathbf{u}+\delta\mathbf{v}$, we may then write $\mathbf{a}<\mathbf{b}$ if they have the same orientation as \mathbf{u},\mathbf{v} ; i.e., if $\alpha\delta-\beta\gamma>0$. From theorem 1.1(v), we have the following.

Theorem 2.2. Suppose $\mathbb{R}\langle \mathbf{u}, \mathbf{v} \rangle$ is an oriented 2-plane, and $\mathbf{a}, \mathbf{b} \in \mathbb{R}\langle \mathbf{u}, \mathbf{v} \rangle$. Then $\mathbf{a} < \mathbf{b}$ if and only if $(\mathbf{u} \wedge \mathbf{v}) \cdot (\mathbf{a} \wedge \mathbf{b}) > 0$.

We will say that an endomorphism $f: \mathbb{R}^n \to \mathbb{R}^n$ is decomposable if $f = \mathbf{u} \wedge \mathbf{v}$ for some $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Observe that if $f = \mathbf{u} \wedge \mathbf{v}$ is non-zero, then image of f is the 2-plane $image(f) = \mathbb{R}\{\mathbf{u}, \mathbf{v}\}$. Moreover, there is a natural orientation for this 2-plane; namely if $\mathbf{a}, \mathbf{b} \in image(f)$, then $\mathbf{a} < \mathbf{b}$ provided that $f \cdot (\mathbf{a} \wedge \mathbf{b}) > 0$.

Theorem 2.3. The map $f \mapsto image(f)$ gives a one-to-one correspondence between the set of all unit decomposable endomorphisms of \mathbb{R}^n and the set of all oriented 2-planes in \mathbb{R}^n .

Proof. The inverse map is given by $\mathbb{R}\langle \mathbf{u}, \mathbf{v} \rangle \mapsto \mathbf{u} \wedge \mathbf{v} / |\mathbf{u} \wedge \mathbf{v}|$. Details are left to the reader.

Theorem 2.4. The 2-planes $\mathbb{R}\{u,v\}$ and $\mathbb{R}\{m,n\}$ are orthogonal if and only if $(u \wedge v) \circ (m \wedge n) = 0$.

Proof. Using theorem 1.1(i) we compute: $(\mathbf{u} \wedge \mathbf{v}) \circ (\mathbf{m} \wedge \mathbf{n}) = (\mathbf{v} \cdot \mathbf{m}) \mathbf{u} \otimes \mathbf{n} - (\mathbf{v} \cdot \mathbf{n}) \mathbf{u} \otimes \mathbf{m} - (\mathbf{u} \cdot \mathbf{m}) \mathbf{v} \otimes \mathbf{n} + (\mathbf{u} \cdot \mathbf{n}) \mathbf{v} \otimes \mathbf{m}$, which is zero if $\mathbb{R}\{\mathbf{u}, \mathbf{v}\}$ and $\mathbb{R}\{\mathbf{m}, \mathbf{n}\}$ are orthogonal. Conversely, if $(\mathbf{u} \wedge \mathbf{v}) \circ (\mathbf{m} \wedge \mathbf{n}) = 0$, then $\operatorname{proj}_{\mathbf{u}\mathbf{v}} \circ \operatorname{proj}_{\mathbf{m}\mathbf{n}} = 0$ by theorem 1.1(iii); it follows that $\mathbb{R}\{\mathbf{u}, \mathbf{v}\}$ and $\mathbb{R}\{\mathbf{m}, \mathbf{n}\}$ are orthogonal.

2.2 Simple rotations

The Lie group SO(n) consists of all endomorphisms $f: \mathbb{R}^n \to \mathbb{R}^n$ that preserve the inner product: $f(\mathbf{u}) \cdot f(\mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, and have unit determinant $\det(f) = 1$. Geometrically, SO(n) is the group of rotations

in \mathbb{R}^n . It is well known that exponentiation gives a surjective map from so(n) to SO(n):

$$\exp: \operatorname{so}(n) \to SO(n), \quad \exp(f) \doteq \sum_{k=0}^{\infty} \frac{1}{k!} f^k.$$

For a decomposable endomorphism, equations (iii) and (iv) of theorem 1.1 can be used to give closed formula for its exponential.

Theorem 2.5. For all $u, v \in \mathbb{R}^n$,

$$\exp(\mathbf{u} \wedge \mathbf{v}) = id - (1 - \cos|\mathbf{u} \wedge \mathbf{v}|) \operatorname{proj}_{\mathbf{u}\mathbf{v}} + \frac{\sin|\mathbf{u} \wedge \mathbf{v}|}{|\mathbf{u} \wedge \mathbf{v}|} \mathbf{u} \wedge \mathbf{v}.$$

Theorem 2.6. $\exp(\mathbf{u} \wedge \mathbf{v})$ is counterclockwise rotation by an angle $|\mathbf{u} \wedge \mathbf{v}|$ in $\mathbb{R}\langle \mathbf{u}, \mathbf{v} \rangle$, and is the identity in the orthogonal complement to $\mathbb{R}\{\mathbf{u}, \mathbf{v}\}$.

Proof. Choose $\mathbf{a}, \mathbf{b} \in \mathbb{R}\{\mathbf{u}, \mathbf{v}\}$ with $\mathbf{a} < \mathbf{b}, \mathbf{a} \cdot \mathbf{b} = 0$ and $|\mathbf{a}| = |\mathbf{b}| = 1$ (so that $|\mathbf{a} \wedge \mathbf{b}| = 1$). By theorem 1.1(v), $\mathbf{u} \wedge \mathbf{v} = |\mathbf{u} \wedge \mathbf{v}| \mathbf{a} \wedge \mathbf{b}$. Thus

$$\exp(\mathbf{u} \wedge \mathbf{v})(\mathbf{a}) = \cos|\mathbf{u} \wedge \mathbf{v}|\mathbf{a} - \sin|\mathbf{u} \wedge \mathbf{v}|\mathbf{b}$$
$$\exp(\mathbf{u} \wedge \mathbf{v})(\mathbf{b}) = \sin|\mathbf{u} \wedge \mathbf{v}|\mathbf{a} + \cos|\mathbf{u} \wedge \mathbf{v}|\mathbf{b}$$

by theorem 2.5. Moreover, if w is orthogonal to $\mathbb{R}\{u, v\}$, then we have $\exp(u \wedge v)(w) = w$, also by theorem 2.5.

We will call a rotation $R \in SO(n)$ simple if there is a 2-plane $\mathcal{P} \subseteq \mathbb{R}^n$ such that (1) \mathcal{P} is stable under R: $R(\mathcal{P}) = \mathcal{P}$, and (2) the orthogonal complement of \mathcal{P} is fixed by R: if $\mathbf{v} \in \mathcal{P}^{\perp}$, then $R(\mathbf{v}) = \mathbf{v}$. Theorem 2.6 says that the exponential of a decomposable endomorphism is a simple rotation.

Theorem 2.7. If $R \in SO(n)$ is a simple rotation, then $R = \exp(f)$, for some decomposable $f \in SO(n)$. In fact, we may take

$$f = \frac{\theta}{2\sin\theta}(R - R^t),$$

where $\theta \doteq \cos^{-1} \frac{1}{2} (trace(R) - n + 2)$.

Proof. First, we may choose a coordinate system for \mathbb{R}^n such that $R = (\frac{\cos \theta - \sin \theta}{\sin \theta - \cos \theta}) \oplus id_{n-2}$, where id_{n-2} is the identity on \mathbb{R}^{n-2} and $0 \le \theta \le \pi$. Thus $R = \exp(f)$, where $f = -\theta(1, 0, \dots, 0) \wedge (0, 1, 0, \dots, 0)$.

Second, write $f = \mathbf{u} \wedge \mathbf{v}$. Observe that id and $proj_{\mathbf{u}\mathbf{v}}$ are self-adjoint (symmetric), while $\mathbf{u} \wedge \mathbf{v}$ is skew-symmetric; thus $\exp(\mathbf{u} \wedge \mathbf{v}) - \exp(\mathbf{u} \wedge \mathbf{v})^t = (2\sin|\mathbf{u} \wedge \mathbf{v}|/|\mathbf{u} \wedge \mathbf{v}|)\mathbf{u} \wedge \mathbf{v}$, by theorem 2.5. Also by theorem 2.5, we have $trace(\exp(\mathbf{u} \wedge \mathbf{v})) = 2\cos|\mathbf{u} \wedge \mathbf{v}| + n - 2$; the formula in the theorem follows. \square

We remark that from the first part of proof of theorem 2.7, we see that the formula for the logarithm of a simple rotation always yields a decomposable endomorphism f whose associated 2-plane \mathcal{P} is oriented in such a fashion that $\exp(f)$ is counterclockwise rotation in \mathcal{P} by an angle less than π .

In two and three dimensions any rotation is necessarily simple and any skew-symmetric endomorphism is necessarily decomposable. Theorems 2.5 and 2.7 thus give a complete recipe for the exponential and logarithm maps in these dimensions. It should be noted that in three dimensions, $R - R^t$ is a multiple of the endomorphism $\Lambda_{\bf u}$, where $\Lambda_{\bf u}({\bf v}) \doteq {\bf u} \times {\bf v}$, and ${\bf u}$ is the axis of rotation for R. In matrix form $\Lambda_{\bf u} = \begin{pmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_z & 0 \end{pmatrix}$, where ${\bf u} = (u_x, u_y, u_z)$; thus the components of the axis of rotation can be read off directly from the matrix $R - R^t$.

2.3 Digression: reflections

Reflection in the hyperplane orthogonal to $\mathbf{u} \in \mathbb{R}^n$ is the unique endomorphism $r_{\mathbf{u}} : \mathbb{R}^n \to \mathbb{R}^n$ which satisfies $r_{\mathbf{u}}(\mathbf{u}) = -\mathbf{u}$, and $r_{\mathbf{u}}(\mathbf{v}) = \mathbf{v}$ for all \mathbf{v} orthogonal to \mathbf{u} . We can give an explicit formula in terms of the outer product of two vectors:

$$r_{\mathbf{u}} = id - 2\frac{\mathbf{u} \otimes \mathbf{u}}{|\mathbf{u}|^2}.$$
 (2)

It is well-known that the compositions of two reflections is a rotation, and in fact, a simple rotation. Indeed, computing using theorem 1.1i and 1.1ii, we get the following.

Theorem 2.8. If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are nonzero, then

$$r_{\mathbf{u}} \circ r_{\mathbf{v}} = id - \frac{2|\mathbf{u} \wedge \mathbf{v}|^2}{|\mathbf{u}|^2|\mathbf{v}|^2} \operatorname{proj}_{\mathbf{u}\mathbf{v}} + \frac{2(\mathbf{u} \cdot \mathbf{v})}{|\mathbf{u}|^2|\mathbf{v}|^2} \mathbf{u} \wedge \mathbf{v}.$$

Comparison with theorem 2.5 then yields the following.

Theorem 2.9. For all nonzero $u, v \in \mathbb{R}^n$, $r_u \circ r_v$ is a simple rotation, and we have

 $r_{\mathbf{u}} \circ r_{\mathbf{v}} = \exp\left(2\theta \frac{\mathbf{u} \wedge \mathbf{v}}{|\mathbf{u} \wedge \mathbf{v}|}\right)$

where $\theta \doteq \cos^{-1}((\mathbf{u} \cdot \mathbf{v})/|\mathbf{u}| |\mathbf{v}|)$.

Note that the angle of rotation is twice the angle between ${\bf u}$ and ${\bf v}$, as one expects from the three dimensional case.

3 Strongly orthogonal decomposition

We will say that two endomorphisms $f,g \in \operatorname{so}(n)$ are strongly orthogonal if $f \circ g = 0$. Since $f \cdot g = \frac{1}{2} \operatorname{trace}(f^t g) = -\frac{1}{2} \operatorname{trace}(fg)$, strong orthogonality implies orthogonality. However, the converse is not true. For example, let \mathbf{e}_i $(1 \le i \le n)$ denote the standard unit vectors in \mathbb{R}^n : at index i the value is unity, and all other indices the value is zero; then $(\mathbf{e}_1 \wedge \mathbf{e}_2) \cdot ((\mathbf{e}_1 + \mathbf{e}_2) \wedge \mathbf{e}_3) = 0$, but $(\mathbf{e}_1 \wedge \mathbf{e}_2) \circ ((\mathbf{e}_1 + \mathbf{e}_2) \wedge \mathbf{e}_3) \ne 0$.

Theorem 3.1. Every element of so(n) can be expressed as the sum of at most $\lfloor n/2 \rfloor$ strongly orthogonal decomposable endomorphisms.

Proof. We view $f \in so(n)$ as a skew-hermitian matrix over \mathbb{C}^n , so that distinct eigenvectors are orthogonal, and eigenvalues are pure imaginary. Given a nonzero eigenvalue $i\lambda_1$ ($\lambda_1 \in \mathbb{R}$) with corresponding unit eigenvector \mathbf{v} , then $-i\lambda_1$ is also an eigenvalue with corresponding unit eigenvector $\bar{\mathbf{v}}$. In this case, set $X_1 \doteq (\mathbf{v} + \bar{\mathbf{v}})/\sqrt{2}$ and $Y_1 \doteq (\mathbf{v} - \bar{\mathbf{v}})/i\sqrt{2}$; thus $X_1, Y_1 \in \mathbb{R}^n$, $|X_1| = 1 = |Y_1|, X_1 \cdot Y_1 = 0, f(X_1) = -\lambda_1 Y_1$, and $f(Y_1) = \lambda_1 X_1$. Then $f_1 \doteq f - \lambda_1 X_1 \wedge Y_1$, is such that $f_1(X_1) = 0 = f_1(Y_1)$. The construction can be repeated at most a total of $\lfloor n/2 \rfloor$ times before the trivial map is obtained.

The construction used in the above proof requires us to find (complex-valued) eigenvalues and eigenvectors. Computationally, this can be difficult; one of our goals is to give an alternate way of finding a strong orthogonal decomposition of a skew-symmetric endomorphism. Let us note however, that such a decomposition is not necessarily unique. For example, the endomorphisms $f \doteq \mathbf{e}_1 \wedge \mathbf{e}_2 + \mathbf{e}_3 \wedge \mathbf{e}_4$ admits the alternate strongly orthogonal decomposition $f_1 + f_2$, where $f_1 \doteq \frac{1}{2}(\mathbf{e}_1 + \mathbf{e}_3) \wedge (\mathbf{e}_2 + \mathbf{e}_4)$ and $f_2 \doteq \frac{1}{2}(\mathbf{e}_1 - \mathbf{e}_3) \wedge (\mathbf{e}_2 - \mathbf{e}_4)$.

3.1 Multiple decomposability

We define an endomorphism $f \in so(n)$ to be q-decomposable if we can write f as the sum of exactly q strongly orthogonal decomposable endomorphisms of the same length; i.e., $f = f_1 + \cdots + f_q$, where $|f_1| = \cdots = |f_q|$, and $f_i \circ f_j = 0$ for $i \neq j$.

Theorem 3.2. Suppose $f \in so(n)$ is q-decomposable. Then

i.
$$f^2 = -\frac{|f|^2}{q} proj_f$$
,

$$ii. \ f^3 = -\frac{|f|^2}{q}f,$$

where $proj_f$ is orthogonal projection onto image(f).

Proof. Write $f = f_1 + \dots + f_q$, and set $\theta \doteq |f_1| = \dots = |f_q|$. From theorem 1.1(iii) and strong orthogonality, we have $f^2 = -\theta^2 \sum_{k=1}^q \operatorname{proj}_{f_k}$. Thus $|f|^2 = -\frac{1}{2}\operatorname{trace}(f^2) = q\theta^2$. Equation (ii) follows from theorem 1.1(iv).

Theorem 3.3. For each $f \in so(n)$, we may write $f = f_1 + \cdots + f_m$, where $m \leq \lfloor n/2 \rfloor$, each f_k is q_k -decomposable, and if $i \neq j$, then $f_i \circ f_j = 0$ and $|f_i|^2/q_i \neq |f_j|^2/q_j$. This decomposition is unique up to reordering of summands.

Proof. For existence, we use theorem 3.1 and group together summands with the same length. For uniqueness, set $x_k \doteq |f_k|^2/q_k$. Theorem 3.2 then implies $f^{2p+1} = (-1)^p \sum_{k=1}^m x_k^p f_k$ for integers $p \geq 0$, from which we obtain the formal matrix equation

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_m \\ \vdots & \vdots & & \vdots \\ x_1^{m-1} & x_2^{m-1} & \cdots & x_m^{m-1} \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_m \end{pmatrix} = \begin{pmatrix} f \\ -f^3 \\ \vdots \\ (-1)^{m-1} f^{2m-1} \end{pmatrix}. \tag{3}$$

The $m \times m$ matrix on the left is a Vandermonde matrix, and is well-known to have determinant $\prod_{i < j} (x_j - x_i)$. Since $x_i \neq x_j$ for $i \neq j$ (by construction), equation (3) is invertable.

3.2 Finding a strongly orthogonal decomposition

Given $f \in so(n)$, we wish to find the strongly orthogonal decomposition stated in theorem 3.3: $f = f_1 + \cdots + f_m$. In fact, the proof of that theorem essentially gives a way of doing this. Observe that from theorem 3.2, we have

$$f^{2p} = (-1)^p \sum_{k=1}^m x_k^p proj_{f_k}$$
 (4)

for integers $p \ge 1$, where $x_k \doteq |f_k|^2/q_k$ (q_k is the multiplicity of f_k). Taking traces and rearranging slightly, we get the equations

$$\sum_{k=1}^{m} q_k x_k^p = \frac{(-1)^p}{2} trace(f^{2p})$$
 (5)

for $1 \leq p \leq m$. Thus if we can solve these (nonlinear) equations for (x_1, \ldots, x_m) , then we can invert equation (3) to get f_1, \ldots, f_m . We remark that a special numerical method exists for solving Vandermonde equations such as equation (3), see [NRC].

We do not usually know a priori the value of m, or the multiplicities q_k $(1 \le k \le m)$; however, we may deduce them as follows. First we solve the equations (5) assuming (for the moment) that $m = \lfloor n/2 \rfloor$ and each $q_k = 1$, which will give us $\lfloor n/2 \rfloor$ numbers $(x'_1, \ldots, x'_{\lfloor n/2 \rfloor})$. Next we remove all zeros and duplicate values to form a new list (x_1, \ldots, x_m) . The length of this list is our desired value of m, and the number of times the value x_k occurs in the original list gives the multiplicity q_k . Note that the new list (x_1, \ldots, x_m) is necessarily a solution of equations (5).

3.2.1 Solutions for low dimensions

We give an explicit solution to the recipe given above in the case m=2; i.e., assuming that $f \in \mathrm{so}(n)$ can be written as a sum $f=f_1+f_2$ of two strongly orthogonal multiply decomposable endomorphisms. In this case, the system of equations (5) can be solved explicitly: one finds the solution $x_1=x_+$ and $x_2=x_-$, where

$$x_{\pm} = \frac{1}{2\delta} \left(-trace(f^2) \pm \sqrt{\eta(2\delta \operatorname{trace}(f^4) - \operatorname{trace}^2(f^2))} \right), \tag{6}$$

where $\delta \doteq q_1 + q_2$, $\eta \doteq q_2/q_1$, and q_k is the multiplicity of f_k . Equation (3) is then be inverted to give

$$f_1 = \frac{1}{x_2 - x_1} (x_2 f + f^3)$$
 and $f_2 = -\frac{1}{x_2 - x_1} (x_1 f + f^3)$. (7)

In particular, this completely solves the decomposition problem in dimensions n=4,5: assume that $q_1=q_2=1$ (so that $\delta=2$ and $\eta=1$) and apply equation (6); if $x_2=0$, or if $4trace(f^4)-trace^2(f^2)=0$, then f must be multiply decomposable with multiplicity 1 in the former case, 2 in the latter.

4 Exponentials

It is a fact that $\exp(f) \circ \exp(g) = \exp(f+g)$ only if f and g commute; and in particular, when $f, g \in \operatorname{so}(n)$ are strongly orthogonal. We exploit this fact to obtain a method for computing the exponential map.

Theorem 4.1. Suppose $f \in so(n)$, and let $f = f_1 + \cdots + f_m$ be a strongly orthogonal decomposition of multiply decomposable endomorphisms, then

$$\exp(f) = id - \sum_{k=1}^{m} \left((1 - \cos \theta_k) proj_{f_k} - \frac{\sin \theta_k}{\theta_k} f_k \right),\,$$

where $\theta_k \doteq |f_k|/\sqrt{q_k}$ and q_k is the multiplicity of f_k .

Proof. By strong orthogonality, $(\sum_k f_k)^p = \sum_k (f_k)^p$. The equality now follows by computation using theorem 3.2.

Thus to compute the exponential of $f \in so(n)$, we may first decompose f into a sum of strongly orthogonal multiply decomposable endomorphisms: $f = f_1 + \cdots + f_m$. Then we may then apply theorem 4.1 to compute $\exp(f)$. However, to minimize the powers of f used, it is actually better to invert equations (4) for $1 \le p \le m$ (also a Vandermonde matrix equation) to obtain the projections used in theorem 4.1.

4.1 Exponentials in low dimensions

The case when $f \in so(n)$ is multiply decomposable (so that m = 1), theorems 4.1 and 3.2 imply that

$$\exp(f) = id + \frac{\sin \theta}{\theta} f + \frac{1 - \cos \theta}{\theta^2} f^2, \tag{8}$$

where $\theta \doteq |f|/\sqrt{q}$ and q is the multiplicity of f. Note that in dimension $n=2, f^2=-\theta^2 id$ and q=1.

Now consider the case m=2: $f=f_1+f_2$, where f_1, f_2 are strongly orthogonal multiply decomposable endomorphisms. We already know that f_1 and f_2 are given by equations (6) and (7). Moreover, by inverting the equations (4), we find that

$$proj_{f_1} = -\frac{1}{x_1(x_2 - x_1)} (x_2 f^2 + f^4)$$

$$proj_{f_2} = \frac{1}{x_2(x_2 - x_1)} (x_1 f^2 + f^4).$$
(9)

These equations, equation (7), and theorem 4.1 then imply that

$$\exp(f) = id + \frac{1}{x_2 - x_1} (Af + Bf^2 + Cf^3 + Df^4), \tag{10}$$

where x_1, x_2 are as in equation (6) and the coefficients are given by

$$A \doteq \frac{x_2 \sin \sqrt{x_1}}{\sqrt{x_1}} - \frac{x_1 \sin \sqrt{x_2}}{\sqrt{x_2}}, \quad B \doteq \frac{x_2 (1 - \cos \sqrt{x_1})}{x_1} - \frac{x_1 (1 - \cos \sqrt{x_2})}{x_2},$$

$$C \doteq \frac{\sin \sqrt{x_1}}{\sqrt{x_1}} - \frac{\sin \sqrt{x_2}}{\sqrt{x_2}}, \qquad D \doteq \frac{1 - \cos \sqrt{x_1}}{x_1} - \frac{1 - \cos \sqrt{x_2}}{x_2}.$$

In the special case n=4, we have a slightly simpler formula. In this case, $proj_{f_1} + proj_{f_2} = id$, so that equation (10) may be written as

$$\exp(f) = \frac{1}{x_2 - x_1} (E id + Af + Ff^2 + Cf^3), \tag{11}$$

where x_1, x_2 are again as in equation (6), and the coefficients are given by

$$E \doteq (x_2 \cos \sqrt{x_1} - x_1 \cos \sqrt{x_2}), \quad \text{and} \quad F \doteq \cos \sqrt{x_1} - \cos \sqrt{x_2}$$

with A, C as above.

5 Logarithms

To compute the logarithm of $R \in SO(n)$, we find m multiply decomposable endomorphisms f_1, \ldots, f_m , each strongly orthogonal to the other, such that

 $R = \exp(f_1 + \cdots + f_m)$. Since the identity and projection mappings are symmetric, while a decomposable endomorphism is antisymmetric, theorem 4.1 implies

$$\frac{1}{2}(R - R^t) = \sum_{k=1}^n \frac{\sin \theta_k}{\theta_k} f_k,$$

where $\theta_k \doteq |f_k|/\sqrt{q_k}$ and f_k has multiplicity q_k . Moreover, by strong orthogonality and theorem 3.2, we get

$$\left(\frac{R-R^t}{2}\right)^{2p} = (-1)^p \sum_{k=1}^m \sin^{2p} \theta_k \operatorname{proj}_k \tag{12}$$

$$\left(\frac{R - R^t}{2}\right)^{2p-1} = (-1)^p \sum_{k=1}^m \frac{\sin^{2p-1} \theta_k}{\theta_k} f_k \tag{13}$$

for integers $p \ge 1$. In particular, equation (12) implies

$$\sum_{k=1}^{m} q_k y_k^p = \frac{(-1)^p}{2} \operatorname{trace}\left(\frac{R - R^t}{2}\right)^{2p} \tag{14}$$

for all $p \ge 1$, where $y_k \doteq \sin^2 \theta_k$.

We may use equations (13) and (14) to find our strongly orthogonal decomposition in so(n). Namely, we first find a solution (y_1, \dots, y_m) to the m equations (14) with $1 \leq p \leq m$. Using this solution, we invert the formal matrix equation formed from equations (13) for $1 \leq p \leq m$ (which may be cast into a Vandermonde matrix equation) to obtain $f = f_1 + \dots + f_m$.

On the other hand, the above solution, as it involves inverting the sine function to obtain θ_k , is only valid for a compound rotation composed of simple rotations by angles less than $\pi/2$. With a little more work, it is possible to do better. Using theorem 4.1, it is possible to show that

$$R^{p} = id + \sum_{k=1}^{m} \left(\frac{\sin p\theta_{k}}{\theta_{k}} f_{k} - (1 - \cos p\theta_{k}) proj_{k} \right)$$

for all integers $p \ge 0$. Consequently since f_k is antisymmetric, for such p we have

$$\sum_{k=1}^{m} q_k \cos p\theta_k = \frac{1}{2} \left(trace(R^p) - n + 2 \sum_{k=1}^{m} q_k \right)$$
 (15)

We may now use these equations, for $1 \leq p \leq m$, in conjunction with equation (13) to find a strongly orthogonal decomposition for $\log(R)$. Note that since $\cos n\theta = 2\cos(n-1)\theta\cos\theta - \cos(n-2)\theta$ for $n \geq 2$, $\cos p\theta_k$ can be expressed as a polynomial of degree p in $z_k \doteq \cos\theta_k$; so solving equations (15), with $1 \leq p \leq m$, amounts to solving a system of algebraic equations.

5.1 Low dimensional formulae

Suppose $R \in SO(n)$. If m = 1, then we obtain the same formula for $\log(R)$ as in theorem 2.7: $f = (\theta/2\sin\theta)(R - R^t)$, except with θ now given by $\theta = \cos^{-1}\frac{1}{2}(trace(R) - n + 2q)/2$, where q is the multiplicity of f.

In the case m=2, the system of equations (15) can be recast in the form

$$q_1z_1 + q_2z_2 = \frac{1}{2}(trace(R) - n) + \delta$$
 and $q_1z_1^2 + q_2z_2^2 = \frac{1}{4}(trace(R^2) - n) + \delta$,

where $z_k = \cos \theta_k$ and $\delta \doteq q_1 + q_2$. These equations have the solution $z_1 = z_+$, $z_2 = z_-$, where

$$z_{\pm} = \frac{1}{2\delta} \left(trace(R) - n + 2\delta \pm \sqrt{H} \right),$$

$$H \doteq \eta \left(\delta trace(R^2) - trace(R)^2 + 2(n - 2\delta) trace(R) + 3n\delta - n^2 \right),$$
(16)

with $\delta \doteq q_1 + q_2$ and $\eta \doteq q_2/q_1$. The strongly orthogonal decomposition for $\log(R) = f_1 + f_2$ is then given by

$$f_{1} = \frac{\theta_{1}}{\sin \theta_{1}} \frac{1}{\sin^{2} \theta_{1} - \sin^{2} \theta_{2}} \left(\sin^{2} \theta_{2} \frac{R - R^{t}}{2} + \left(\frac{R - R^{t}}{2} \right)^{3} \right)$$

$$f_{2} = \frac{\theta_{2}}{\sin \theta_{2}} \frac{1}{\sin^{2} \theta_{2} - \sin^{2} \theta_{1}} \left(\sin^{2} \theta_{1} \frac{R - R^{t}}{2} + \left(\frac{R - R^{t}}{2} \right)^{3} \right)$$
(17)

where $\theta_k = \cos^{-1}(z_k)$ (k = 1, 2).

References

[NRC] Numerical recipes in C, by W. H. Press, B. B. Flannery, S. A. Teukolsky, and W. T. Vetterling; published by Cambridge University Press, 1988; ISBN: 0521431085.