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The Hopf fibration, named after Heinz Hopf who studied it in a 1931 paper [9], is an
important object in mathematics and physics. It was a landmark discovery in topology
and is a fundamental object in the theory of Lie groups. The Hopf fibration has a
wide variety of physical applications including magnetic monopoles [14], rigid body
mechanics [11], and quantum information theory [13].

Unfortunately, the Hopf fibration is little known in the undergraduate curriculum,
in part because presentations usually assume background in abstract algebra or mani-
folds. However, this is not a necessary restriction. We present in this article an intro-
duction to the Hopf fibration that requires only linear algebra and analytic geometry.
In particular, no vector calculus, abstract algebra, or topology is needed. Our approach
uses the algebra of quaternions and illustrates some of the algebraic and geometric
properties of the Hopf fibration. We explain the intimate connection of the Hopf fibra-
tion with rotations of 3-space that is the basis for its natural applications to physics,

We deliberately leave some of the development as exercises, called “Investi gations,”
for the reader. The Investigations contain key ideas and are meant to be fun to think
about. The reader may also take them as statements of facts that we wish to assume
without interrupting the narrative.

Hopf’s mapping

The standard unit n-sphere 8" is the set of points (xg, xy, ..., x,) in R*! that satisfy
the equation

xp+xi++x2=1

Geometrically, S* is the set of points in R"' whose distance from the origin is 1.
Thus the 1-sphere S' is the familiar unit circle in the plane, and the 2-sphere 52 is
the surface of the solid unit ball in 3-space. The thoughtful reader may wonder what
higher dimensional spheres look like. We address this issue at the end of this article,
where we explain how stereographic projection is used to “see” §3.

The Hopf fibration is the mapping /4: §* — §? defined by

Cha,b,c,d) = (@ + b2 - - 42, 2(ad + bc), 2(bd — ac)). 0))

To be historically precise, Hopf’s original formula differs from that given here by a
reordering of coordinates. We use this altered version to be consistent with the quater-
nion approach explained later in this article. It is easy to check that the squares of the
three coordinates on the right-hand side sum to (a2 + b2 + ¢ + d*)? =1, so that the
image of h is indeed contained in §2.

What problem was Hopf trying to solve when he invented this map? And how can
one see any connection with physical rotations, as we have claimed?
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Hopf’s paper [9] represented an early achievement in the modern subject of fo-
motopy theory. In loose terms, homotopy theory seeks to determine those properties
of a space that are not altered by continuous deformations. One way to discover the
properties of an unfamiliar space X is to compare X with a familiar one ¥ via the
set of all continuous maps ¥ — X. Two maps whose images can be continuously de-
formed from one to the other are called homotopically equivalent, Knowin g something
about ¥ and also about the set of homotopically equivalent maps from ¥ to X helps
us understand X. This seemingly indirect method provides a powerful way to analyze
spaces.

Ironically, one of the most intractable problems in homotopy theory is to determine
the homotopy equivalence classes of maps ¥ — X when X and ¥ are both Spheres
and the dimension of X is smaller than the dimension of ¥. Many individual cases for
particular pairs of dimensions of X and ¥ are understood, but there remain interesting
unsolved problems. Hopf’s map A: 5% — §2 was a spectacular breakthrough in this
area. We cannot give the full story of this discovery here, but we can explain the Hopf
fibration in a geometric way that indicates its connection to rotations.

Rotations and quaternions

First, notice that a rotation about the origin in R? can be specified by giving a vector for
the axis of rotation and an angle of rotation about that axis. We make the convention
that the rotation will be counterclockwise for positive angles, when viewed from the
tip of the vector (as in FIGURE 1), and clockwise for negative angles.

Figure 1 A rotation in R3 is specified by an angle 6 and a vector v giving the axis

The specification of a rotation by an axis vector and an angle is far from unique.
The rotation determined by the vector v and the angle @ is the same as the rotation
determined by the pair (kv, 6 + 2nw), where k is any positive scalar and 7 is any
integer. The pair (—v, —6) also determines the same rotation. Nonetheless, we see that
four real numbers are sufficient to specify a rotation: three coordinates for a vector and
one real number to give the angle. This is far fewer than the nine entries of a 3 x 3
orthogonal matrix we learn to use in linear algebra. In fact, we can cut the number
of parameters needed to specify a rotation from four to three, for example, by giving
an axis vector whose length determines the angle of rotation. However, we shall not
pursue that here; it is the 4-tuple approach that turns out to be practical. Is there an
efficient way to work with 4-tuples of real numbers to do practical calculations with
rotations? Here are some questions that we recommend you ponder long enough to
realize that they are cumbersome to answer by matrix methods. Revisit this topic after
doing Investigation E below,

INVESTIGATION A. Show that the composition of two rotations is another rota-
tion. (The composition of two rotations is the motion obtained by performing first one
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rotation, then the other. Show by example that order counts.) Given geometric data
(axes and angles) for two rotations, how do you determine the axis and angle for their

composition?

The problem of finding a convenient algebraic method for computing with rotations
led William Rowan Hamilton to invent the guarernions in the mid-19th century. The
discovery of quaternions, and Hamilton’s life in general, is a fascinating bit of history.
For further reading, see biographies by Hankins [7] and O’Donnell [15]. Kuipers [10,
§ 6.2 ff] gives an exposition of the rotation problem in Investigation A and its solution,
beyond what appears in this section.

Hamilton was inspired by the solution to the analogous problem in two dimensions:
rotations of the plane about the origin can be encoded by unit length complex numbers.
The angle of a rotation is the same as the angle made by its corresponding complex
number, thought of as a vector in R?, with the positive real axis. The composition
of rotations corresponds to the multiplication of the corresponding complex numbers.
Hamilton tried for years to make an algebra of rotations in R3 using ordered triples of
real numbers. One day he realized he could achieve his goal using 4-tuples.

Here is Hamilton’s invention: As a set (and as a vector space) the set of quaternions
is identical to IR*. The three distinguished coordinate vectors (0, 1, 0, 0), (0, 0, 1,0),
and (0, 0,0, 1) are given the names i, j, and &, respectively. The vector (a, b, c, d) is
written a + bi + ¢j + dk when thought of as a quaternion. The number a is referred
to as the real part and b, ¢, and d are called the i, j, and k parts, respectively. Like
real and complex numbers, quaternions can be multiplied. The multiplication rules are
encapsulated by the following relations.

P= =k =1
ij=k jk=i ki=j
The elements i, j, and k do not commute. Reversing the left-right order changes the
sign of the product.
Ji=—k ki=—-i ik=—j
Here is a sample multiplication.
(B+2j))A—4i+k)y=3—-12i +3k+2j — 8i +2jk (distributing)
=2 120 +3k+ 2i + 8k + 2i (applying relations)
=3-100 +2j+11% (combining terms )

The conjugate of a quaternion r = a + bi + cj -+ dk, denoted 7, is defined to be 7 —
a — bi — ¢j — dk, which resembles the complex conjugate. The length or norm of a
quaternion r, denoted ||r||, is its length as a vector in R*, v/a2 + b2 + ¢2 + 42, (The
term norm, when applied to quaternions, is sometimes used in other treatments to
denote the square of the Euclidean norm defined here.).

INVESTIGATION B. What algebraic properties do the quaternions share with the
real or complex numbers? How are they different? In particular, verify the following
things: Show that quaternion multiplication is associative but noncommutative. (As-
sociativity means that p(¢qr) = (pq)r for all quaternions p, g and r.) The norm of
r = a+ bi + ¢j + dk can also be written as ||r|| = +/r7. The norm has the prop-
erty |[rs|l = [[r]l lls|l for all quaternions » and s. (Because of this, multiplying two
unit length quaternions yields another unit length quaternion.) The set of unit length
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quaternions, viewed as points in R*, is the 3-sphere 3. Each nonzero quaternion r has
a multiplicative inverse, denoted r~!, given by

7
I 112

When r is a unit quaternion, r~! is the same as 7. (Kuipers [10, Ch. 5] is a good source
for other details about quaternion algebra.)

Here is how a quaternion r determines a linear mapping R,:R3 — R?. To a point
p = (x, ¥, z) in 3-space, we associate a quaternion xi + ¥j + zk. By slight abuse of
notation, we will also call this p. Since the real part of p is zero we call it a pure
quaternion. The quaternion product rpr=! can be shown to be pure, and hence can be
thought of as a point xi + y'j + 2’k = (x’, y’, z’) in 3-space. We define the mapping
R, by

R (a3 = rpr * = (¥, y'2'), )

¥, 2) (x, . 2)

Figure 2 A nonzero quaternion r gives rise to a rotation R in R3

INVESTIGATION C. Is the mapping R, described in the previous paragraph indeed
a linear map? Verify that this is the case. Moreover, show that the map determined by
any nonzero real scalar multiple of » is equal to R,, that is, show that Ry, = R, for any
quaternion r and any nonzero real number k. Show that when r # 0, R, is invertible
with inverse (R,)™' = R,1,.

From the “moreover” statement in this Investigation, whenever r # 0, we are free
to choose r to have norm 1 when working with the map R,, and we shall do so since
this makes the analysis simpler; we may restrict our consideration to points on the
3-sphere S in order to work with rotations given by quaternions.

For r # 0, it turns out that R, is a rotation of R3. The axis and angle of the rotation
R, are elegantly encoded in the four coordinates (a, b, c,d) inthe following way, when
r is a unit quaternion. If r = =1, it is easy to see that R, is the identity mapping on
R, Otherwise, R, is a rotation about the axis determined by the vector (b, ¢, d), with
angle of rotation 6 = 2cos™!(a) = 2sin~'(v/b? + 2 + d?). To appreciate how nice
this is, have a friend write down a 3 x 3 orthogonal matrix, say, with no zero entries;
now find the axis and angle of rotation. You will quickly appreciate the elegance that
quaternions bring to this problem, as compared with matrix methods.

The facts stated in the preceding paragraph are not supposed to be obvious. The
next investigation gives a sequence of exercises that outline the proof. For a detailed
discussion, see Kuipers [10, § 5.15].

SIS |

In
Bl

gr
gr

o

g¢

ni
the
gi
in

tic
su’

Bz

W
po
on:
let



SAZINE

n » has

source

1 point
wse of
a pure
can be

apping

@)

ndeed
ed by
or any
‘rtible

2 free
since
n the

ation
when
1g on
with

nice
tries;
> that

The
ailed

S

VOL. 76, NO. 2, APRIL 2003 91

INVESTIGATION D. How does a unit quaternion encode geometric information
about its corresponding rotation? Let r = a + bi + c¢j + dk be a unit quaternion. Ver-
ify that if » = *£1, then R, defined above is the identity mapping. Otherwise, show
that R, is the rotation about the axis vector (b, ¢, d) by the angle 8 = 2cos™!(a) =
2sin~"(v/B2 + ¢ + d?), as follows.

1. Show that R, preserves norm, that is, that | R, (p)|| = Il pll for any pure quaternion
P = xi + yj + zk. (This follows from the fact that the norm of a quaternion product
equals the product of the norms.)

2. Show that the linear map R, has eigenvector (b, ¢, d) with eigenvalue 1.

3. Here is a strategy to compute the angle of rotation. Choose a vector w perpendicular
to the eigenvector (b, ¢, d). This can be broken down into two cases: if at least one
of b and ¢ is nonzero, we may use w = ¢i — bj. If b =c =0, we may use w = .
Now compute the angle of rotation by finding the angle between the vectors w and
R,w using the following formula from analytic geometry, where the multiplication
in the numerator on the right-hand side is the dot product in R3,

w-Rw
lfw}?

cosf =

In all cases the right-hand side equals a* — b* — ¢® — d* = 2a% — 1. Now apply a
half-angle identity to get a = cos(8/2).

Here is the fact that illustrates how Hamilton accomplished his goal to make an
algebra of rotations.

INVESTIGATION E. Let r and s be unit quaternions. Verify that
R, o R, = R,,.

In words rather than symbols: the composition of rotations can be accomplished by the
multiplication of quaternions. Now go back and try Investigation A.

The next investigation is appropriate for a student who has some experience with
groups, or could be a motivating problem for an independent study in the basics of
group theory. (Armstrong [2] gives an excellent introduction to group theory with a
geometric point of view.)

INVESTIGATION F. The set of unit quaternions, S°, with the operation of quater-
nion multiplication satisfies the axioms of a group. The set of rotations in 3-space, with
the operation of composition, is also a group, called SO(3). The map ¢: $* — SO(3)
given by r — R, is a group homomorphism. Each rotation R in SO(3) can be written
in the form R = R, for some r € §3 (that is, the map @ is surjective), and each rota-
tion R, has precisely two preimages in S, namely r and —r. The kernel of @ is the
subgroup {1, —1}, and we have an isomorphism of groups

S /{1, -1} =~ SO(3).

The 3-sphere, rotations, and the Hopf fibration

We now reformulate the Hopf map in terms of quaternions. First, fix a distinguished
point, say, Py = (1,0,0) = i, on 5% (Any other point would work as well, but this
one makes the formulas turn out particularly nicely.) Given a point (g, b, c, d) on $3,
letr = a + bi + cj -+ dk be the corresponding unit quaternion. The quaternion  then
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defines a rotation R, of 3-space given by (2) above. The Hopf fibration maps this
quaternion to the image of the distinguished point under the rotation; in formulas, this

is

re> R.(Py) =rir™' = rir. (3)

INVESTIGATION G. Verify that the two formulas (1) and (3) for the Hopf fibration
are equivalent.

Figure 3 The unit quaternion r moves (1,0, 0) to P via R,. The Hopf map takes r to P.

Consider the point (1, 0, 0) in S2. One can easily check that the set of points
C = {(cost,sint,0,0) | t € R)

in $% all map to (1, 0,0) via the Hopf map A. In fact, this set C is the entire set of
points that map to (1, 0, 0) via 4. In other words, C is the preimage set h~'((1, 0, 0)).
You may recognize that C is the unit circle in a plane in R*. As we shall see, this is
typical: for any point P in §?, the preimage set A~'(P) is a circle in S3. We will also
refer to the preimage set 2~!(P) as the fiber of the Hopf map over P.

We devote the remainder of this article to study one aspect of the geometry of the
Hopf fibration, namely, the configuration of its fibers in S°. Using stereographic pro-
Jection (to be explained below) we get a particularly elegant decomposition of 3-space
into a union of disjoint circles and a single straight line. Because this arrangement is
fun to think about, we cast it first in the form of a puzzle.

INVESTIGATION H. (LINKED CIRCLES PuzzLE) Using disjoint circles and a sin-
gle straight line, can you fill up 3-space in such a way that each pair of circles is linked,
and the line passes through the interior of each circle?

It is the linked nature of the circles that makes this puzzle interesting. If the circles
are not required to be linked, there are easy solutions. For example, just take stacks of
concentric circles whose centers lie on the given line (see FIGURE 4). We will show
that the Hopf fibers themselves give rise to a solution to this puzzle, but see if you can
think of your own solution first.

We begin with an observation, presented in the form of an Investigation, on how to
find rotations that take a given point A to a given point B.

INVESTIGATION I. Given two points A and B on S that are not antipodal, how
can we describe the set of all possible rotations that move A to B ? First, choose an arc
of a great circle joining A to B and call this arc A B; note that the choice of arc is not
unique, although the great circle is. Convince yourself that if R is a rotation taking A
to B, then the axis of R must lie somewhere along the great circle bisecting AB (see
FIGURE 5). Along this great circle there are two axes of rotation for which the angle
of rotation is easy to compute.
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Figure 4 One way to fill R* with disjoint circles and a line. Now try to arrange for every
pair of circles to be linked!

Figure 5 The axis of any rotation taking A to B must pass through the great circle C that
bisects AB

1. When the axis of rotation passes through the midpoint M of AB, the angle of
rotation @ is 7 radians or 180 degrees. Let us call this rotation R, (see the drawing
on the left in FIGURE 6).

2. When the axis of rotation is perpendicular to the vectors v = O A and w — O*B,
the angle of rotation is (plus or minus) the angle between v and w and is given
by cos(f) = v - w. We will call this rotation R; (see the drawing on the right in
FIGURE 6).

rotation R rotation R,
Figure 6 Two rotations taking A to B
If a point r in $? is sent by the Hopf map to the point P in S2, then by Investi gation G

we know that the rotation R, moves the point (1, 0,0) to P. We can use Investigation
I'to find the axis and angle of rotation for two rotations that map (1,0,0) to P.
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Once we have axes and angles of rotation for the rotations R, and R, of Investiga-
tion I, we can use Investigation D to find the quaternions ry and r, that map to R and
R under the map ¢, that is, R =R, and R, = R,,.

INVESTIGATION J. What are explicit formulas for the quaternions r; and r, de-
scribed above? For the point P = (py, p,, p3) on §2, verify that the quaternions ry and
ry are given by

1
= e (14 p)i + paj + pok) |
r T, (I + p)i+ pyj + p3k)

1+P1( —p3J pak )
=/ =2 (1+ + :
& 2 +p 1+ p

Let us write e for cos ¢ + i sin . The fiber h™'(P)is givenas a parametrically defined
circle in R* by either of the following.

hil(P) = {"13”}051521

hkl(P) = {7'26”}0552:(
The point P = (-1, 0, 0) is a special case, and ;! ((=1,0,0)) is given by

h(=1,0,0)) = (ke }o<r<on.

Seeing the Hopf fibration

Next we demonstrate a method that allows us to see a little of what is going on with
the Hopf fibration. Qur aim is to show pictures of fibers. We do this by means of
stereographic projection, which may be familiar to readers from an article by Delman
and Galperin [6] in the previous issue of the MAGAZINE.

We begin by describing the stereographic projection of the 2-sphere to the x, y-
plane. Imagine a light source placed at the “north pole” (0,0, 1). Stereographic pro-
Jection sends a point £ on 52 to the intersection of the light ray through P with the
plane as in FIGURE 7.

Figure 7 Stereographic projection

The alert reader will notice that the point (0, 0, 1) has no sensible image under this
projection. Therefore we restrict the stereographic projection to §2 \ (0, 0, 1).
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2stiga- INVESTIGATION K., Verify that the stereographic projection described above is
Ry and a’ given by

ra de- ,' (x,»,2) (1 a ——y—) .

ry and -z 11—z

Write out the inverse mapR? — §2\ (0, 0, 1). That s, given a point (a, b) in the plane,

what are the (x, y, z) coordinates of the point on 5% sent to (a, b) by the stereographic

projection? Show that a circle on S? that contains (0, 0, 1) is mapped to a straight line

in the plane. Prove that a circle on 52 that does not pass through the point of projection

| (0,0, 1) is mapped by the stereographic projection to a circle in the plane. (Ahlfors [1,

i Ch. 1 § 2.4] gives a proof that stereographic projection preserves circles based on
elementary geometry of complex numbers.)

e | Like the definition of the sphere, stereographic projection generalizes to all dimen-
sions, and in particular, it provides a projection map 53 \ (1,0,0,0) — R? given by
X y Z
(w'x’y’Z)H(lﬁw’I—w'l—w)' @
The point (1, 0, 0, 0) on S from which we project is an arbitrary choice, but it does
make the formulas simple.

The real power of stereographic projection is this: it allows us to see all of the 3-
sphere (except one point) in familiar 3-space. This is remarkable because §3 is a curved
object that resides in 4-space.

The last property in Investigation K above—that Stereographic projection preserves

. circles—holds in all dimensions [4, Chapter 18]. We know from the previous section
vith that fibers of the Hopf map are circles in S?. It follows that stereographic projection
s of sends them to circles (or a line, if the fiber contains the point (1,0, 0, 0)) in B3, We
Han conclude with two Investigations that show how the stereographic images of the Hopf

fibers solve the linked circles puzzle.
L y- -
To- INVESTIGATION L. Let us denote by s the stereographic projection s : §3 \

the | (1,0,0,0) — R® given in (4). Then s o h=1((1, 0, 0)) is the x-axis, s 0 h=1((—1, 0, 0))

is the unit circle in the Y, z-plane, and for any other point P = (py, p,, p3) on 52 not
equal to (1,0, 0) or (-1, 0, 0), s o h™1(P) is acircle in R3 that intersects the ¥, z-plane
in exactly two points A and B, one inside and one outside the unit circle in the e
plane. This establishes that s o /~! (P) is linked with the unit circle in the y, z-plane.
The points A and B lie on a line through the origin containing the vector (0, P3.—pP2).
The plane of the circle 5o £~'(P) cannot contain the x-axis (if it did, s o h='(P)
would intersect s o h=1((1, 0, 0)), but fibers are disjoint). From these observations we
can conclude that the x-axis passes through the interior of the circle 5o /4-! (P). See

F1GURE 8.

INVESTIGATION M. To show the linked nature of any two circles C and D that are

projections of fibers, we exhibit a continuous one-to-one map 1: R* — 3 that takes

C to the unit circle in the y, z-plane, and takes D to some other projected fiber circle.

Since the image of D is linked with the unjt circle in the y, z-plane, as in FIGURE 8, C

and D must also be linked. (Students who have never studied topology may accept the

_ intuitively reasonable statement that the linked nature of circles cannot be altered by

1 a continuous bijective map, aided by FIGURE 9. Students with experience in topology
may enjoy trying to prove this.)

i
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Figure 8 A generic projected Hopf fiber. A and B mark the intersections of the fiber with 1
the y, z-plane. i

0

Figure 9 If the continuous bijective images C', Y of circles C, D are linked, then C and
D must also be linked.

Here is how to construct the map . Let P be any point on the circle C, and let
r = s7!(P). Define f:R* — R* by S (x) = kr~'x (quaternion multiplication). The
map 1 is the composition s o f o5,

Tnlp Yt %
: : pf fibration
:. C@ ‘.‘ Ack

S, o s $2 Leb:
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R REFE

Figure 10  Stereographic projections of Hopf fibers. Any two projected fibers are linked ; LI'
circles, except so h=1(1,0, 0), which is a line. : f;
4. M

! 3 “H:

i 6. C.

! 7. T

: [ 8. D.
Conclusion | x5
63

We have explained how to understand the Hopf fibration in terms of quaternions, In the 10, J.1
process, we showed how the algebra of rotations in 3-space is built into the workings 1L L}
12. G.

of the Hopf map.
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Topics raised in the Investigations suggest many lines of inquiry for independent
student research. For example, making computer animations of linked Hopf fibers has
been an independent study research project for two of our undergraduate students.
FIGURE 11 shows an image from the software written by Nick Hamblet (see Acknowl-
edgment below). The left panel shows a set of points lying on a circle in the codomain
52 of the Hopf fibration. The right panel shows, via stereographic projection, the fibers
corresponding to those points. An ongoing project is to build a web tutorial site fea-
turing the animations. The reader who finds topics in this article appealing will enjoy
a related article [18]. For general inspiration, and more on the geometry of R* and
rotations. see Hermann Weyl’s lovely book Symmetry [16].

I Transparent Axes Resets

"~ Rotations

Figure 11 Screenshot of Hopf fiber software
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Bob Brill makes art by composing simple computer algorithms that generate imagery. F; abst
There are worlds of order and beauty lying dormant in our various mathematical sys- i dity
tems, waiting to be made visible by these algorithmic processes. This is the beauty of [ 6065
pattern, thythm, symmetry, asymmetry, balance, and movement. These are the worlds ! outl
he explores in his art. “Mathematics,” Brill says, “more than any other human activ- ! s
ity, seems to offer connections to the underlying order of the world. This is a great of h
inspiration for an artist and a great challenge.” 5 i
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“Beyond Lissajous,” by Bob Brill. Visit the artist’s website: see http://users. after
migate.net/ bobbrill. How
For more about Math Awareness Month, see page 118, recog




