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Abstract

This paper presents a compact differential formula for the first derivative of a unit quaternion
curve defined on SO(3) or §%. The formula provides a convenient way to compute the angular
velocity of a rotating 3D solid. We demonstrate the effectiveness of this formula by deriving the
differential properties of various unit quaternion curves [4, 5, 6, 7, 8] at the curve end points.
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1 Introduction

Given a single 3D solid object, its orientation can be uniquely specified by an element ¢ € SO(3),
where SO(3) is the rotation group of R? (see [2, 5, 8]). The rotational motion of a 3D solid object
can be uniquely specified by a connected path in the space SO(3); thus the motion control problem
is: how to modify the shape and speed of a path ¢(t) € SO(3) (0 < ¢ < 1). The rotation group
SO(3) is a projective space which is constructed from the unit 3-sphere S® by identifying each
pair [g, —q] of two antipodal points ¢ and —g € S® as a single point ¢ € SO(3) (see [2]); the
local geometry of SO(3) is thus identical to that of S%. Since the differential properties are local
properties, we compute the quaternion curve differentials in S? instead of SO(3).

Shoemake [7] introduced the unit quaternions to the computer graphics community for the
purpose of controlling 3D solid rotations. By generalizing line segments in R® to geodesic great
circular arcs in 5%, Shoemake [7] extended the de Casteljau algorithm to generate Bézier quaternion
curves in S3. Given four unit quaternions ¢; € S* (i = 1,2, 3,4), a cubic Bézier quaternion curve
q(t) € 8% (0 < ¢ < 1) is determined by the four control points g;’s; for this curve g(t), Shoemake
[7] claimed that

q'(0) = 3-9,,4,0) and (1) =37, (1),

where 7,4, (t) (0 < t < 1) is the geodesic circular arc connecting ¢; and ¢; in S®. However, the
differentiation itself was considered to be rather challenging and the details were not given in [7].



Shoemake [8] used the formula:
dg® = ¢*In(g)da + ag®~dg, (1)

in deriving the quaternion curve differentials on S* for the purpose of extending Boehm quadrangle
[1] to S, This formula was cited from the great work of Sir Hamilton [3]; however, the formula only
holds under the complanarity condition: ¢ - dg = dg - ¢ (see [3], pp. 148 and 453). Unfortunately,
Shoemake [8] misinterpreted the meaning of dg, which is the differential ¢'(¢), as the logarithm log g
[9]. (More details on the geometric meaning of log g are explained in §2.) One can easily check the
failure of the above formula in Equation (1) from a simple example: g(t)? € S° for which a(t) = 2;
that is, we have

d

i (= 510 q(t) = 4'(t) - q(t) + q(t) - 4'(t) # 2q9() - 4'(1),

Eq
since the quaternion multiplication is not commutative in general.

In this paper, we present a compact differential formula for the first derivative of a unit quater-
nion curve. Using this formula, we can easily show that the claims of Shoemake [7, 8] on the
quaternion curve differentials actually hold at the curve end points. It is also easy to prove that
Hanotaux and Peroche [4] do not generate a Hermite quaternion curve which interpolates two given
boundary angular velocities exactly; using the differential formula presented in this paper, we pro-
vide a simple way to remedy this limitation. Furthermore, the quaternion calculus can be greatly
simplified for computing the first derivative of a circular blending quaternion curve [5, 6]. However,
the differential formula of this paper is only useful for the first derivative of a unit quaternion curve.
For higher order derivatives such as the ones used in [5] to prove the C*-continuity of a circular
blending quaternion curve, we still need to use a more complex formula [5, 6].

The rest of this paper is organized as follows. In §2, mathematical preliminaries are given and
the differential formula is derived for a unit quaternion curve. In §3, we apply the differential
formula to prove the differential properties of various unit quaternion curves (see [4, 5, 6, 7, 8]).
Finally, in §4, we conclude this paper.

2 Differential Formula
2.1 Logarithmic and Exponential Maps
Given a unit quaternion g = (w,z,,2) € 8% (i.e.,, w2 + 22+ y? + 22 = 1), let

(w,y,z) = SQ.

6 = arccosw € [0,7] and (a,b,¢) = NZEwr

Then we have

w = cosf,
sinf = V1—-cos20 = V1—w? = /22 +9y2+22, and (2)
(z,9,2) = 22+ y?>+2%-(a,b,c) = sinb- (a,b,c).

Thus, the unit quaternion ¢ € §® can be represented by:
g = (cos#,sinf - (a,b,c)),

where 0 < 0 < « and (a,b,c) € S2.



A unit quaternion g = (cos,siné- (a,b,c)) € S* maps each point p = (z,y, z) € R® into a point
p' = (z',y,2') € R® which is given by the relation (see [2, 8]):

(Ouzlayivz,) =4g:- (0,:.9,y,z) g,

where the - operation is the quaternion multiplication and § is the conjugate quaternion of g, i.e.,
g = (cos@,—sinf - (a,b,c)) € §%. One can easily check that the point p’ is the same as the one
which is obtained by rotating the point p about an axis (a, b,c) by an angle 20. Thus each unit
quaternion ¢ € S3 represents such a rotation; at the same time, it represents the orientation (of a
3D solid) which is obtained by rotating the solid from the standard orientation (which is represented
by the identity quaternion 1 = (1,0,0,0)) about an axis (a,b,c) by an angle 26. Note that the
two antipodal points ¢ and —¢q of S® give the same rotated point (z',4,2') € R?; thus the two
unit quaternions g and —q € S° represent the same orientation. By identifying each pair of two
antipodal points ¢ and —q € S® as a single orientation, the rotation group SO(3) is obtained as a

& uotient prejective space of 5°.

0 Under the rotation p( about an axis (a,b,c) € 52 by an angle 26, each intermediate orientation
obtained is the same as the one which is obtained by rotating the 3D solid about the same axis
(a,b,c) € §? by an angle 26t for some ¢ € [0,1]. When we rotate a given 3D solid from the standard
orientation, the trace of all the intermediate orientations can be represented by the geodesic circular
arc vy 4(t) € 83,0 < ¢ < 1, which connects the two unit quaternions: 1 and g¢; that is,

71,4(t) = (cos 6¢,sinbt - (a,b,c)), for 0 <t <1.

The geodesic circular arc in $° or SO(3) is also called as slerp in computer graphics (following its
first usage in Shoemake [7]). The velocity for the curve y; 4(t) is given by:

Yiq(t) = (—0sindt,6cosbt- (a,b,c))
= (0,0 (a,b,c)) - (cos 6t,sinbt - (a,b, c))
= (07 0 - (CL, ba C)) ' 'YLq(t)}
for 0 < ¢ < 1, where the - operation between two 4D vectors means the quaternion multiplication.

In this paper, the - operation is interpreted as scalar multiplication, inner product, or quaternion
multiplication depending on the context. The initial velocity is thus given by:

'Yi,q(o) = (O:H ! (a’: b': C))

The mapping from each unit quaternion ¢ = (cos f,sin@-(a, b, ¢)) to the initial velocity (0,6 (a, b, c))
gives a well-defined map from the 3-sphere S® (of unit quaternions) into the tangent space 775 =
R3. The tangent space T1S? is the space of all angular velocities from the standard orientation.
The Talyor series expansion of the logarithmic function for unit quaternions realizes such a map
(see [2]):

log(cos #,sin# - (a,b,c)) = (0,6 - (a, b, c)). (3)
It is easier to prove the inverse relation:

exp(0,8 - (a,b,c)) = (cos 8,sinb - (a,b,c))

by expanding the Taylor series of the exponential function for (0,8 - (a,b,c)); see [5, 6]. Thus the
unit quaternion curve 7; 4(f) (0 < ¢ < 1) can be represented by the log and exp maps:

T,4(t) = (cosBt,sinbt- (a,b,c))



= exp(0,6t- (a,b,c))

= exp(t-(0,0-(a,b,¢)))

= exp(t-log(cosh,siné - (a,b,c)))

= exp(t - log(q)).
Furthermore, the geodesic circular arc 7, 4,(t) € S* (0 < ¢ < 1) which connects two unit quater-
nions q; and gz € S® is given by (also see [5, 6]):

Yor,g2(t) = exp(t-log(gz - q7)) - q1, for0<¢ < 1. (4)

The curve differential is also given by:

Voras(®) =V g (B - @1 =108(02 - 017) - Y91 (1), for 0< ¢ <1,

Using the identities in Equation (2) and ignoring the first component of the right-hand side of
Equation (3) which is always 0, we can define the logarithmic map log : S* — R® as follows (see
Figure 1).

Definition 2.1 The logarithmic map log : S* — R? is defined by:
(z,9,2) _ arccosw

log(w, z,y, 2) = (arccos w - .
g(w,z,1,72) = ( ) = s

Furthermore, given an initial velocity v = (z,y,2) = 8- (a, b, c), by using the relation

0 = |v]| =22+ y2 + 22

1
b9 = g @v A = o)

the exponential map exp (which is the inverse map of log) can be defined as follows.

(z,y,2)), for (w,z,y,2) € S8,

Definition 2.2 The ezponential map exp : R — S% C R* is defined by:

(cos [[oll, Sl - (2,,2))  if v = (z,y,2) # (0,0,0)

EXP(L?J:ZJ = { (I,0,0,0) if v = (-’E;T ;Z) = (010}0)

2.2 Differential Formula for an Exponential Map

We are familiar with the differential of a one-variable real-valued function f : R — R; that is, the
first derivative f'(z) of f at z € R is defined by:

h—0 h :

where h € R. To compute the differential of exp : R? — R*, we need a more general definition of
the differential for a multi-variate multi-valued map.

Definition 2.3 A map F : B — R™ is differentiable at p = (zy,...,z,) € R™ if and only if there
15 a linear map L : R™ — R™ such that
—F(p)— L
L IF@+R) ~ F) - L]
h—+(0,...,0) Al

where h € R". The linear map L is denoted by dF, and called as the differential of F at p.
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Figure 1: Log and Exp Maps.

The computation of dF), with this definition is not easy since it requires to guess the linear map L
and then to prove that the above limit actually goes to 0. When the coordinate functions of F' are
given by well-defined differentiable functions in a neighborhood of p € R™, there is a convenient
way of computing the differential dF), in terms of the partial derivatives of each of the component
functions of F. This is given in Theorem 2.4 (see [10] for the proof).

Theorem 2.4 For a differentiable map F : R™ — R™ which is defined by
F(p) :F(:Clu"' ::‘T—’.TL) = (fl(mlu"‘vmﬂ):' "=fm(m11“‘ >xﬂ)) € Rm:

forp=(z1,...,z,) € R™, the differential de is given by the m X n Jacobian matriz:
a
dF, = : :
& fm 8fm
g\%(p) e )

In Definition 2.1, the component functions of the exponential map exp are differentiable func-
tions for (z,v,2) # (0,0,0). Thus, by applying Theorem 2.4, we can easily obtain the differential

formula dexp,, .y for (z,y,2) # (0,0,0). (See Figure 2.)

Theorem 2.5 For v = (z,y,z) # (0,0,0), the exponential map exp : R> — R* has its differential
dexp(g ) represented by a 4 x 3 Jacobian matriz:

T~ o/ %Y W*W Ii W wIE ) Y%
I "~ mF) B~ ) 2 T

where ¢ = cos |[v|| and s = sin||v]|.



In Figure 2, the differential dexp)o,, is illustrated as a mapping which maps each basis vector
e; € Tloqu3 into the basis vector a; € TQS3 (i =1,2,3). Note that the three column vectors of the
Jacobian matrix d exp,, , are identical with the three basis vectors ai, az, a3 € 5%

The differentiability of the exponential map exp at v = (0,0,0) is not clear from the definition
of exp; thus we prove the differentiability of exp at (0,0,0) and compute the differential d €XD(0,0,0)
by using Definition 2.3. For this purpose, we first need to guess the linear transformation L; the
columns of L can be computed by taking the partial derivatives of exp with respect to z,y, 2.

¥/ “

Figure 2: Differential of an Exponential Map.

Theorem 2.6 For v = (0,0,0), the differential dexpg ) is given by:

Proof: Let h = (z,y,2) € R? be a 3D vector which approaches to the origin (0,0,0) € R?, and L
be the above 4 x 3 matrix; then the following relation shows that dexp(g ) = L by Definition 2.3.

dexp(,0,0) =

o o = O
o= O o
= o O O

|| exp(w, Y, Z) = exp(O, Oa 0) W L(:U, Y, Z}”

y
h=(0.0.0) &

- Icos [12l, Eltl - (2,9, 2)) - (1,0,0,0) = (0,2,y,2)|

T o000 1Al

o (cos 1Al — 1, (S - 1) - (2,9, 2)) |

T as(000) Al

o NGB + olRI), (< I + oRI) - (2,9, 2) |

T R (000 ]



im (=5 W+ o1, (= - 18l + o) - 2,,2)) |
= 10,0,0,0)
=0 m

2.3 Differential Formula for a Unit Quaternion Curve

The differential formula for a unit quaternion curve g(t) € §° (0 < t < 1) is obtained by decompos-
ing the quaternion curve ¢(¢) into two maps, exp and log g, which can be realized as maps between
two Euclidean spaces and then by applying the following chain rule to the composite map (see [10]
for the proof).

Theorem 2.7 (Chain Rule) If F : R® — R™ is differentiable at p € R™ and G : R™ — R* is
differentiable at F(p) € R™, then the composite map G o F : R® — RF is differentiable at p € R™.
Furthermore, the differential of the composite map is given by: d(G o F), = dGp(y) - dFy.

For a unit quaternion curve g(t) € $% (0 < ¢ < 1), the curve can be represented by
q(t) = exp(log g(t)), for 0 <t < 1.

Since we have ¢ : R — S® and log : $* — R3, the composite map p(t) = log¢(t) (0 <t < 1) defines
a map p: R — R3; that is, we have

p(t) =logq(t) = (x(t),y(t),2(t)) € R®, for 0 <t <1,

which defines a space curve in the 3D Euclidean space R®. Thus the quaternion curve ¢ : R —
S§% ¢ R* can be decomposed into two maps, p: R — R® and exp : R® — S% C R%; the above chain
rule can be applied to the composite map

q(t) = exp(log q(t)) = exp(p(t)), for 0 <t <1

Theorem 2.8 For a unit quaternion curve q(t) € S® and the space curve p(t) = logq(t) =
(z(t),y(t), 2(t)) € R® (0 <t < 1), the differential ¢'(t) is given by:

q"(t) = dexpp(t) (p’(t)) = dexp(m(t},y(t},z(t)) (Sﬂf(f), y’(t), Z’(t))
Especially, for ¢ € [0,1] such that p(t) = (z(¢),y(t), 2(¢)) = (0,0,0), from Theorem 2.6, we have a

simpler formula:

Corollary 2.9 For a unit quaternion curve g(t) € S® and the space curve p(t) = logq(t) =
(z(t),y(t),2(t)) € R® (0 <t < 1), the differential ¢'(t) at t € [0,1] such that p(t) = (0,0,0) is

given by:
q'(¢) = dexp(o,0)(0'(t)) = p'(t) = (' (1), ¥/ (t), ' (£))-



3 Applications

In this section, we apply the differential formula derived in the previous section to prove and/or
simplify some of the curve differential properties which have been claimed and/or used in the

previous works [5, 6, 7, 8].

3.1 Blending Quaternion Curve

We first consider a quaternion curve ¢(¢) € §% which is obtained by blending two quaternions curves
q1(t) and g2(t) € S* with a blending function f(¢) € R (0 < ¢ < 1). That is, for each ¢ € [0, 1],
the unit quaternion ¢(¢) € 52 is obtained as the point which subdivides Ya1(t),02() 10 the ratio of
f(t) : 1 — f(t), where vg,(t),q,(¢) is the geodesic circular arc which connects ¢1(t) and go(t) on S°.
The blending quaternion curve g(t) is given by the following analytic formula (see Equation (4)
and [5, 6]):

g(t) = exp(f(t)-log(gz(t) - q1(t)™H) - qu(t)
= exp((1 - f(t)) - log(g1(?) - @2(£)™")) - @2(t), for0<t<1.

The Bézier quaternion curve (7], the spherical quadrangle curve [8], and the circular blending
quaternion curve [5, 6] all belong to this class of blending quaternion curves. Thus the differential
formula derived in Theorem 3.1 and Corollary 3.2 can be directly applied to these quaternion

curves.

Theorem 3.1 Given two quaternion curves q(t) and go(t) € S3, the blending quaternion curve
q(t) € 8% of qi(t) and ga(t) with respect to a blending function f(t) € R (0 < ¢t < 1) has its
differential q'(t) given by:

. d _
q'(t) = dexpisu)iog(as(t)a(t)-1)) (f’(t)'log(@(?f) () + f() - 7z o8(a2(t) - qu(¢) 1)) ~qi(?)

+ exp(f(t) - log(a2(t) - q1(t) ™)) - 41 (2)-

qt) = ie}cp(f(t)'log(@(t)-ql(t)1))}-Q1(t)+exp(f(i)-log(qz(t)-ql(t)"l))-Qi(t)

= deXP(5(t).1og(ga(t)}m (£)~1)) (%(f(t) log(g2(t) - @1 (t)l))) - q(t)
+ exp(f(t) - log(gz(t) - q1(6) ™)) - a1 (2)
= dexp(f(t)-log(qz(t)~q1(t}‘l)) (ff(t) -log(g2(t) - q1(8) ™) + f(t)- %IOQ(Q’Z(t) 'Q’l(t)—l)) -q1(1)

+ exp(f(t) -log(a2(t) - a1()™1) - d1(1). M

Corollary 3.2 Fort € [0,1] with f(t) =0, the differential ¢'(t) is given by:

q'(t) = f'(t) log(a2(t) - 1 (t)™") - qu(t) + @1 (2)-



q(t) = dexpiog(g(t)am-1) | F()logla(t) ai()™) +0- gtlog(qz() ql(t)‘l))-ql(t)

+ exp(0 - log(ga(t) - q1(t)™1)) - g1 (¢)
dexpqg 0,0y (f'(t) - log(ga(t) - qu{t)™")) - q1(t) + exp(0,0,0) - ¢} (2)
1

= f'(t) - log(ge(t) - u(t) ™) -

3.2 Bézier Quaternion Curve

Given four unit quaternions ¢; € S° (1 = 1,2, 3,4), Shoemake [7] constructs a cubic Bézier quater-
nion curve ¢q,1(t) (0 < ¢ < 1) by extending the de Casteljau algorithm to S°, that is, by using
geodesic circular arcs of S? instead of line segments of R? in the algorithm. Shoemake [7] claimed

that

24,1(0) = 375, 4,(0) and g (1) =3 744, (1),
where 7y, 4, is the geodesic circular arc which connects the two unit quaternions ¢; and ¢; in 54,
However, no details are given in Shoemake [7]. Using the differential formula which is developed in

Corollary 3.2, we can easily show this differential property of the Bézier quaternion curve.
We consider the general case of Bézier quaternion curve g, 1(t) € S* which is defined by n

control points of unit quaternions ¢; € % (i = 1,...,n). We show that
01(0) = (n—1)7,4,(0) = (n—1) log(ez-gr") - a1,
01(1) = (n=1) -9, . (1) = (n—1)-log(gn  g;21) - gn

We prove this relation by an induction on n. First of all, each Bézier quaternion curve g ;(%)
denotes the Bézier quaternion curve which is constructed by m control points of unit quaternions
Gis-ry Giym—1 € 8. For n = 2, the quaternion curve g2,1(t) is given by the geodesic circular arc

Ya1,q2 () (0 <t <1); that is,
g2,1(t) = Yg1,4,(8), for 0 <t <1

It is clear that
42,1(0) =74, 4,(0) and g3 1(1) =g, 4, (1)

The quaternion curve g, 1(t) is recursively defined by
Gn,1(t) = exp(t - log(gn-1,2(t) - gn1,1(6) 7)) - gn-1,1(2),

for 0 < £ < 1. The blending function f(¢) = ¢ has the condition: f(0) = 0 and f'(0) = 1; by
Corollary 3.2 and the induction hypothesis, we have:

@1(0) = log(gn-1,2(0) - gn-1,1(00"") - gn-1,1(0) + g1 1 (0)
= log(gz ;") g1+ (n—2)-log(gz q7") @
= (n—1)-log(gz-q1) - ¢
= (= 1) %0 (0)

The curve gy 1(t) can also be defined by

gn,1(t) = exp((1 — t) - log(gn—1,1(t) - gn—12(8)"1)) - gn_12(t), for 0 <t <1.



The blending function: f(¢) = 1 — ¢, has the condition: f(1) =0 and f'(1) = —1; by Corollary 3.2
and the induction hypothesis, we have:

Gni(1) = —108(gn-1,1(1) - gn-12(1)7") - gn1,2(1) + g1 5(1)
= —log(gn-1-97") g+ (n—2) -log(gn - g3"1) - gn
= log(gn-gp"1) g + (n — 2) - log(gn - ¢ 21) - gn
= (n—1)-log(gn - 4311)  tn
= (n=1)7, g0

3.3 Spherical Quadrangle Curve

Given four unit quaternions ¢; € S% (i = 1,2, 3,4), Shoemake [8] constructs a spherical quadrangle
curve g(t) (0 <t < 1) by extending the quadrangle curve of Boehm [1]; that is, the curve g(¢t) is
defined by

q(t) = exp(2¢(1 — 1) - 108(Va2,05 () * V1,00 (8) ™)) - Yir,0a(2), for0< ¢ <1,

Since the blending function f(t) = 2¢(1 — ¢) has the condition: f(0) = f(1) = 0, f'(0) = 2, and
(1) = —2, we have:

q’(O) = ZIOg(’?’qz,qs (0) 7?1,94( ) ) Yq1,94 (0) + 7:;1,114 (O)
= 2log(ga-a7') @ +loglaa -1 1) - an,
q’(l) = -2 IOg('Yqz qs(l) Ya1,q4(1) "~ ) : 7@1,04(1) + 7:;1,%(1)

= —2log(gs -q7") - g1 +log(aa - q7’t) - ga-

3.4 Circular Blending Curve

Given two unit quaternions q; and gz, and two circular quaternion curves C(t) and Cy(t) € S3
(0 <t < 1) which interpolate the two unit quaternions q; and gs:

C1(0) = g1 = C3(0) and C1(1) = g = Co(1),
Kim and Nam [5, 6] showed that the blending quaternion curve ¢(t) € S which is defined by
q(t) = exp(t-log(Ca(t) - C1{t)™ 1)) - Ci(t), for 0<t <1,

satisfies

¢(0)=Ci(0) and Q'(1) = Cy(1).
Since the blending function f(¢) = ¢ has the condition: f(0) =0 and f'(0) = 1, we have

¢'(0) = log(Cz(0)-C:(0)71) - C1(0) + C1(0)
= log(q1-¢i") - a1 + C1(0)
= log(1)-q1 + C1(0)
= 0-q1+C1(0)
= C1(0).
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The curve g(t) can also be defined by
q(t) = exp((1 — ) - log(C1(2) - Co(t)™1)) - Ca(2).
Since the blending function f(t) = 1 — ¢ has the condition: f(1) =0 and f’(1) = —1, we have

qd(1) = —log(Ci(1) - Ca(1)™h) - Ca(1) + C3(1)
= —log(gz-¢5") - g2+ C5(1)
= —log(1)- g2+ C5(1)
= 0-q+C3(1)
= CH(1):

3.5 The Quaternion Curve of Hanotaux and Peroche

Hanotaux and Peroche [4] present a construction method (based on the exponential and logarithmic
maps) to generate a unit quaternion curve ¢(t) € S* which interpolates a given sequence of unit
quaternions ¢; € S® (i = 1,...,n). Each unit quaternion g; is projected into logg; € T1S% = R3,
and the velocity v; at logg; is approximated by:

1 -
=3 log(git1 - ¢ 1) € TiS° = R?, (5)

where 7,5 denotes the 3-dimensional tangent space of 5% at ¢ € S°. For each pair of two consec-
utive unit quaternions ¢; and g;4+; € S%, a Hermite curve p;(t) € R® (0 <t < 1) is constructed that

interpolates the four boundary conditions:
pi(0) =loggi, pi(1) =loggiy1, pi(0) =i, and pi(1) = viy.

The quaternion curve ¢;(t) € S° (which is a subsegment of g(¢) between g; and g;11) is then
constructed by mapping the Hermite curve p;(t) € R® back to §% under the exponential map:

:(t) = exp(p;(t)), for 0 <t <1 (6)
It is easy to check that ¢;(t) interpolates ¢; and g;y1:

gi(0) = exp(pi(0)) = exp(loggq:) = g,
¢;(1) = exp(pi(1)) = exp(loggiy1) = git1.

Furthermore, two consecutive unit quaternion curve segments ¢;(t) and g;41(t) € S (0 <t < 1)
have the same velocity at the common end point ¢;(1) = g;+1 = gi+1(0):

gi(1) = dexpy, 1y (p;(1)) = dexpig ., (vit1) = dexp,,, 0y (Pi41(0)) = 141 (0).

Thus a C'-continuous unit quaternion curve g(f) € S° is constructed that interpolates a given
sequence of unit quaternions ¢; € 8% (i = 1,...,n).

In the above construction, note that any other assignment of v;’s would also generate a C1-
continuous unit quaternion curve g(¢) € §3. Then, the question is: what is the most reasonable
assignment of default values for v;’s 7 Following the philosophy of Catmull-Rom spline tangents,
we may claim that a reasonable choice for the tangential velocity w; € T, S® of the curve ¢(t) € S*
at each ¢; is:

1 .
w; = 5 log(git1 -qi_ll) Q=50 G € qu'SE"

11



Figure 3: Tangent Spaces.

where v; € T15° = R? is the tangential velocity given in Equation (5). Since the quaternion
multiplication gives a Lie group structure on S3, the transformation (which is called as the right
translation by g;):
Ry : 8 — 83
g = g-4q

induces a linear transformation:

d(qu.)l: T153 s TqiSS.
v — V-q

and Peroche [4] transformed the tangential velocity w; € T,,,5° into the corresponding cannonical
tangential velocity v; = w; - q; L€ 715% = R® by doing a right translation by q; L in the Lie group
S3. This is necessary for the construction of a Hermite interpolation curve p;(t) € R® (0 <t < 1)
in T1.5% = R3; the 4D vector w; can not be used directly for the construction of a Hermite curve in
R3. Thus a 3D vector v; is used instead for the Hermite interpolation. However, the choice of v; in
this way seems not reasonable.

The quaternion curve g;(t) constructed by Equation (6) does not interpolate the tangential
velocities w; and w;41 at the curve end points (i.e., ¢;(0) # w; and ¢}(1) # w;+1). This is because
the velocity »; € R does not map into the tangential velocity w; = v; - ¢; € TqiS3 under the
differential dexp)og g,

The differential d(R,,); is an isomorphism with its inverse d(R -1)q;: Ty, 5% — T183. Hanotaux

q;'(O) 5= dexppi(()) (p; (0)) = dexplog g (Ut) # Vi G-

This fact shows that Hanotaux and Peroche [4] do not generate an exact Hermite interpolation
quaternion curve g¢(¢t) € S* (0 < ¢ < 1) which interpolates two boundary unit quaternions q; and
g2 € 5§ and two boundary angular velocities w; € 7,,S% (i = 1,2). The algorithm of [4] guesses

12



Vi a8 Wi~ g, ' € R3; however, the right solution for v; € R® should be the one which satisfies the
relation:
dexplogqi (Ui) = Wy, for i = 1, 2.

Let A be the 4 x 3 Jacobian matrix of d€xPlyg q,> and let ay,az,a3 be the three column vectors of
A. The three 4D vectors ai,as,as span the tangent space Ty, of S® (see Figure 2). Furthermore,
since the angular velocity w; € Ty, S® is a 4D vector which is tangent to S%, w; can be uniquely
represented by a linear combination of a1, as,as. The coeflicients for the linear combination can be
computed as the coordinates of a 3D vector v; € R® as follows. Let

Av;=w;, fori=1,2,

then we have
AtAv; = A'w; and v, = (A'A) "L Abw;.

Since the 4 x 3 matrix A has rank 3, the composite 3 X 3 matrix A*A4 has rank 3 (see [11], pp. 156
157); thus it is invertible and there is a unique solution v; for the Hermite interpolation problem.

4 Conclusion

We have derived a compact differential formula for the first derivative of a unit quaternion curve in
S0(3) or S3. The effectiveness of this formula is demonstrated in deriving the differential properties
of various unit quaternion curves [4, 5, 6, 7, 8]. However, the differential formula of this paper is
only useful for the first derivative of a unit quaternion curve; for higher order derivatives, we still
need to use a more complex formula (see [5]).
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