A C?-continous B-spline Quaternion Curve

Interpolating a Given Sequence of Solid Orientations

Myoung-Jun Kim Myung-Soo Kim
Computer Science Department Department of Computer Science
KAIST POSTECH
Taejeon 305-701, Korea Pohang 790-784, Korea
mjkim@jupiter.kaist.ac.kr mskim@vision.postech.ac.kr

Sung Yong Shin
Computer Science Department
KAIST
Taejeon 305-701, Korea

syshin@jupiter.kaist.ac.kr

Abstract

An algorithm is presented that constructs a ('*-continuous B-spline quaternion curve which
interpolates a given sequence of unit quaternions on the rotation group SO(3). The de Casteljau
type construction method of B-spline curves can be extended to generate B-spline quaternion
curves [Sch92]; however, the B-spline quaternion curves do not have C'*-continuity in SO(3).

The authors [KKS94a] recently suggested a new construction method that can extend a B-
spline curve to a similar one in .SO(3) while preserving the C*-continuity of the B-spline curve.
We adapt this method for the construction of a B-spline quaternion interpolation curve. Thus,
the problem essentially reduces to the problem of finding the control points for the B-spline
interpolation curve. However, due to the non-linearity of the associated constraint equations, it
is non-trivial to compute the B-spline control points. We provide an efficient iterative refinement

solution which can approximate the control points very preciesly.

Keywords: Quaternion, rotation, SO(3), 52, B-spline, Bezier, interpolation, control vertices

1 Introduction

Unit quaternion curves play an important role in computer animation as a computationally reli-
able tool for controlling rotations for both object models and virtual cameras [GW91, Sho85]. An
advantage of unit quaternions is that they are free from singularities such as gimbal lock. Further-
more, unit quaternions are computationally more efficient than the 3 x 3 matrix representation of a
3D rotation. Thus, the design of various quaternion curves has recently become an active research
topic in computer animation [KKS9%4a, KN, KN94, NH92, Ple89, Sch92, Sho85, Shod1, WJ93|.

The rigid motion of a 3D solid object can be represented as a continuous curve (p(t),q(t)) €
R?x 50(3), 0 <t < 1, where R3 is the 3-dimensional Euclidean space and S50(3) is the rotation
group of B3 [Cur72]. The curves p(t) and ¢(¢) represent the translational and rotational motions
of the solid, respectively. The space SO(3) is obtained as a projective space of the unit quaternion
space §° under the identification of each pair of two antipodal points ¢ and —¢ € S as a single
element [Ham69, JT86, Sho85]. Thus, the local geometry of SO(3) is identical to that of S3. The
curve constructions can be done in a more intuitive space 52, and the constructed curves can be
projected into SO(3) by using the antipodal identification. Thus, the rotation control problem
essentially reduces to that of constructing a unit quaternion curve in 52.

In computer animation, it is a fundamental problem to generate a smooth motion for a rigid
body so that the generated motion interpolates a given sequence of keyframe positions and orien-
tations. For the interpolation of keyframe positions in R?, there are many well-known techniques
available such as B-splines, Hermite, and Bézier curves. However, it is relatively difficult to extend
them to the construction of interpolation curves in §%. The CAGD techniques can be used for the
construction of rational spherical curves in §3; however, the speed of rational curves are somewhat
difficult to manipulate since they are constructed by a stereographic projection from some interpo-
lation curves generated in R*. Since the relative speed of a curve is very important for applications
in computer animation, it is desirable to have curve construction schemes which are based on some
intrinsic geometric properties of the space $° itself.

Many of the previous results are based on the recursive constructions of geodesic great circular
arcs in S° [Ple89, Sch92, Sho85, Sho91]. Some of recent results are based on the construction
of circular arcs in §3 [KN94, WJ93]. Most of the previous methods construct C'l-continuous
quaternion curves [KN94, Sho85, Sho91, WJ93]. Because of the discontinuity in second derivatives,
there may occur large angular accelerations at the curve joints, which have undesirable effects on
generating naturally-looking rotations [BCGH92]. Thus, high degree continuity is also an important
factor for the quaternion curves in computer animation.

There are only a few C?-continuous quaternion curves. Pletincks [Ple89] constructed quaternion
curves by generating curve mid points recursively. The generated curves are extremely smooth since

they converge to infinite degree curves. However, they have no closed form equations. Furthermore,

the method always generates (2' — 1) in-betweens (for some integer i > 0), which is a serious draw-
back for keyframe animation systems. Kim and Nam [KN] constructed a C'*-continuous quaternion
curve by blending two circular arcs in 5% with a high degree blending function of degree 2k — 1.
Though a high degree blending can eliminate the C*-discontinuity at the curve joints, the global
smoothness of the whole curve is somewhat difficult to be achieved in this method. It is required
to have the generalization of B-spline curves which have extreme smoothness in the overall curve
shapes.

Schlag [Sch92] extended the de Casteljau construction scheme (of cubic Bézier quaternion curves
[Sho85]) to the construction of B-spline quaternion curves. Nielson and Heiland [NH92] tried to
construct a B-spline quaternion curve with C'2-continuity which interpolates a given sequence of
unit quaternions. The B-spline quaternion curve is constructed as a sequence of cubic B-spline
quaternion curve segments. The boundary positions and velocities of each cubic B-spline curve
segment determine a cubic Bézier quaternion curve segment. Both curve segments are identical
in R>; however, they are different in $3. The two curves do not even have the same derivative at
the curve end points. Furthermore, two consecutive cubic B-spline quaternion curve segments do
not meet with C%-continuity, either. Nielson and Heiland [NH92] assumed the geometric properties
which are not true in general for the quaternion curves in $°. Thus, the constructed B-spline
quaternion curve is not C?-continuous.

The above discussion is the main observation of this paper; it also provides the main motivation
for the development of another type of B-spline quaternion curves which the authors [KKS94a]
recently proposed. The proposed B-spline quaternion curves are constructed so that they are in-
trinsically C*-continuous when they are constructed with C*-continuous basis functions. In this
paper, we consider how to compute the B-spline control points so that they generate a B-spline
quaternion curve which interpolates a given sequence of unit quaternions. Preserving many impor-
tant geometric properties of B-spline curves in R>, the B-spline quaternion curves have extreme
smoothness with small gross angular accelerations.

The rest of this paper is organized as follows. In Section 2, we review the previous construction
method of B-spline quaternion curves based on the de Casteljau algorithm, and discuss our obser-
vations on some important failures of the geometric properties of B-spline curves in 2. Section 3
briefly introduces another type of B-spline quaternion curve which satisfies the C*-continuity. Sec-
tion 4 describes an iterative refinement method for approximating a cubic B-spline interpolation

of unit quaternions. Section 5 demonstrates some experimental results. Finally, we conclude this

paper in Section 6.

2 Some Remarks on B-spline Quaternion Curves

Nielson and Heiland [NH92] constructed a B-spline quaternion curve @(¢) which interpolates a given
sequence of solid orientations ¢; (= 0,1,--+,7n). The spline interpolation is done by constructing a
sequence of cubic quaternion curve segments C; (i = 0,1,---,n). Each segment C; interpolates two
consecutive unit quaternions ¢); and ¢;y1, and two consecutive curve segments C; and C;;; meet
with Cl-continuity at the common end point ();. Nielson and Heiland [NH92] assumed that the
two curve segments C; and Cjy1 would meet with C?-continuity at Q;. However, this assumption is

not true in SO(3) and S, in which the quaternion multiplication is not commutative. We discuss

more details helow.

Given two unit quaternions ¢; and ¢z, the geodesic great circular arc G[q1, ¢2](¢), which connects

g1 and gz, is given by:
Glar, 2(t) = (a7 ') = qrexp(tlog(qi*q2)), for 0 <t < 1. (1)

Given four control points gi—1, ¢, ¢i41, gi+2, the cubic Bézier quaternion curve GBz[g;_1, ¢i, ¢i+1, ¢i+2](t)

is defined by [Sho85]:

GBz[gi-1, ¢, Gi41](t) = G[Glgi-1, %:](1), Glgi, ai1](D)](1) ,
GBz[g;, git1, Gi42)(t) = G[Glai, Gig1] (1), Glairr, G2 (D](E) (2)
GBA[% 1,47 Git1s Q'H—?](t) GBZ[% 1,445 %«}-1](” GBZ C_h, Gi+1 G142 (t)](t)

Similarly, the cubic B-spline quaternion curve GB[gi—1, ¢i, ¢i+1, ¢i+2](t) is defined by [Sch92]:

GB[qi—laqia q“i-{-l}(t) = G[G[%—h%](3)1 [q“gﬂ-l]()]()
GBl[g, €{1'+1,Q’é+2](t) = G[Glg, Q'H—l](i) [%+179’z+2](§)}() 5 (3)
GB[¢i-1, ¢, Git1, Gi42)(t) = GIGB[gi—1, ¢, qir1](5F), GBlai, Gigr, gi+2)(3))(2) -

Let D; (¢ = 0,1,---,n) be the control points for the B-spline quaternion curve. Furthermore,

let I; and R; be defined by:
L; = G[D;—1, Di](3) and R; = G[D;, Diy](3). (4)
Then, we have the following relation:
G[LiaRi}(%) =G . (5)
Nielson and Heiland [NH92] assumed that:

GB[D;i-1, Dy, Diy1, Diy2)(t) = GB2[Qs, Ry Lit1, Qipa(2)], for0<¢ < 1. (6)

Unfortunately, this is not true in the non-Euclidean space SO(3) and 5. Furthermore, even though

the two curve sements have the same curve end points, their end derivaties are different:

d d
N BDi*yD’iaD; 7D?: t N
7 t=DG [Di—1 +1, Dira] () # — _

L GB2(Qs, R Livt, Qi ()] = QiQ'R). (7T)

The cubic Bézier quaternion curve segments satisfying Equations (4) and (5) do not meet with
C?-continuity. Even more, the B-spline quaternion curve is not C'2-continuous too. (See Kim, Kim,

and Shin [KKS94b] for more details). Thus, we need a different scheme to develop a C%-continuous

quaternion spline interpolation.

3 DB-spline Quaternion Curve with a Cumulative Form

Kim, Kim, and Shin [KKS94a] presented a general curve construction scheme that transforms a
spline curve in R?® (represented by a basis form) into a similar one in 5% The effectiveness of
this general scheme is demonstrated in [KKS94a] for the construction of Bézier, Hermite, B-spline
quaternion curves. We briefly summarize the construction method of B-spline quaternion curves.
For other quaternion curves and more details, see [KKS94a)].

Given n + 1 control points {p;}, the B-spline curve P(¢) of order & is defined by:
P(t) =) pmBE(1)
1=0
where the base functions BF(¢)’s are defined by the following recurrence relation [Boo78]:

1 ifﬁi<t<ti+1
() =

0 otherwise

and
t

BHY) = B0+ S pk)
The basis functions are C*~2 continuous piecewise polynomials of degree (k —1). They are C*—2-
continuous everywhere, but may not be C*~1-continuous at the knot sequence {t;}. Each B(¢)
has a non-zero support on the interval [t;,%;1x], i.e., Bf(i) = Utori < Tperd bl

The B-spline curve can be reformulated as follows:

P(2) = poB5(1) + 3 (ps — pen) BH(D)

where
SHEBE(t) if ti <t < tipra

Bf(t) =Xk, Biij=« 2 iff ¥ Bt
0 ift <t

By replacing P(t) to Q(¢), p; to ¢, and the summations to the quaternion multiplacations, the

corresponding B-spline quaternion curve with a cumulative basis form is formulated as follows:

n

f)—q OT (g e)B®

=1

The B-spline quaternion curve is C*~2 continuous and locally controllable by moving the control

points {g;} [KKS94a].

4 Quaternion Spline Interpolation

Given a sequence of data points P; (¢ = 0,1,---,n), the data interpolation can be done by con-
structing a uniform cubic B-spline curve P(¢) which interpolates each data point point P; at ¢ = 3.

The cubic B-spline curve P(t) with n + 2 control point p;’s (i = —1,0,---,n + 1) is defined by:

n+1

= > mBi(1)
-l
For notational simplicity, we denote B;(t) = B(t). We use the uniform B-spline with the knot
sequence: #; = 4 — 2. Thus, the local support for each control point p; is [¢ — 2,7 + 2], which is
centralized to p;. When the control points p;’s are given so that P(¢) = F;, the resulting B-spline
curve P() interpolates the given sequence of data points P;’s. The relation P(¢;) = P(i) = P

forms a system of linear equations:
pic1+4 pi+pip1=6F, fort=0,1,---,n. (8)

With proper boundary conditions for p_; and p,41, there are n + 1 equations for n + 1 unknowns.
Since the system is strictly diagonally dominant, there exits a unique solution. An iterative method
to compute the solution can be formulated as follows:

. 6 1 1
P =~ (Pi* g Pi1 “6Pz‘+1) 2 (9)

This equation is obtained by solving Equation (8) for p;. Equation (9) is a contraction map, which
is guaranteed to converge to a unique solution. Furthermore, in each iteration, the error is reduced
by a factor of é(1 + 1) = 1. By extending the same idea to the B-spline quaternion curve (as

6 2"
discussed in the previous section), we can construct a B-spline quaternion curve which interpolates

a given sequence of unit quaternions @; (¢ =0,1,---n).

The B-spline quaternion curve ¢)(t) is defined by:
Bott) T 5
a(t) = ¢3 " [[(aha)>®,
=0

where
n+1

Eg(t) = Z Bi(?f) :
j=i
From the condition: ¢(i) = @;, we have n + 1 equations:
- | I | 1 .
qﬁ'*]-(Qifl%')a(q'i gi+1)6 == QZ ’ for i = 01 1: R (10)

Since there are n + 1 equations for n + 3 unknowns ¢_1, 4o, -, ¢nt+1, We need two boundary condi-

tions. We use the end conditions for a natural spline:
R"(0)=0 and @Q"(n)=0.
When these two boundary conditions are applied to Equation (10), we obtain:
190 = ' and ¢ 'gni1 = ¢ 0,

or equivalently,

1

-1 = Q’o(qo_lm)_ and @p41 = Qn(q;_llqn) .

Thus, Equation (10) now reduces to:

q(] = QD 9
Gi1(674¢)5 (¢ gig1)6 = Qs , fori=1,2,--n—1, (1D
qn = Qn .

Unfortunately, the system of Equation (11)is non-linear. There is no known method to compute
the exact solution. We apply the iterative method of Equation (9) to solve the non-linear system of
Equation (11). However, due to the non-linearity of the problem, there are some restrictions for the
input values of ();’s so that the convergence of the iterative method is guaranteed. For the conver-
gence, the input data should satisfy one of the following two conditions: either (i) the key distances
| log(Q;},@:)| are within a certain bound or (ii) the rotational axis differences in three consecutive
orientations ¢;_1, &, and @4, are within a certain bound. Each of these two conditions implies
that, when the magnitudes are small, the quaternion multiplication is roughly commutative and

thus Equation (11) is roughly linear. Each step of the iterative refinement introduces a smaller

error than the previous step; thus, the iteration proceeds as a contraction map and the iterative

solution converges to a unique solution.

5 Experimental Results

We formulate an iterative refinement procedure for the solution of Equation (11) as follows. The

dominant term on the left hand side is (g7} q,-)?'s. By solving Equation (11) for the term, we have

- 5 . » N
(¢:214:)% = 424Qi(47 gigr) s (12)

Then, by solving for the variable ¢; on the left hand side, we have:
¢ = ¢i-1[g1 Qi qira) O (13)

For the initial guess, we set ¢; = ¢; on the right hand side.

The iterative refinement can be represented by a non-linear map F on a quaternion vector
q={q,9, @}
q(n+1) = F(q(”)) :
where q1) = {Q1,Q4, -, @} is the initial guess. When the iteration F is strictly convergent, the

map F'is a contraction map with the contraction ratio K < 1:
dist(F(q), £'o F'(q)) < K - dist(q, F(q)) , (14)

where dist(qq, q2) is the distance between two quaternion vectors q; and qq under a certain metric.

Equation (14) implies that:
dist(q"+1),q("t?)) < K - dist(q™, gDy < K1 dist(qV), q() .

Thus, the sequence dist(q(”],q(““)) converges to 0 as n — oo, and the sequence q(™ converges to
a unique solution g. Unfortunately, the non-linear map F' is not guaranteed to be contractive.

For a given input sequence of keyframe orientations);’s, let the key distance 6; and the axis

difference ¢; be defined by:

6; = |1log(Q4Qi)l,
¢ = |axis(Qi—1, Qi) X axis(Qs, Qit1)),

where axis(¢1,¢2) is the rotational axis from ¢ to g. When all the keyframe orientations lie on
the same rotation axis, i.e. ¢; = 0, the iteration F' becomes linear and a contraction map with the

contraction ratio K = 3/5 < 1. Thus, it converges very quickly. Similarly, we can expect that the

of iterations

100 I

80 -

60 -

40 -

20 -

Figure 1: The number of iterations as a function of the key distance

iteration F' would remain to be contractive for small values of 8; or ¢;. This is because the iteration
F behaves almost as a linear map in these cases. As the values of 8; and ¢; increase, the iteration
F shows non-linear behavior and the contraction property becomes weaker. Eventually, the map F'
will lose the contraction property and the corresponding convergency for large values of 6; and ¢;.
From this observation, if the iteration F' converges for some values of #; and ¢;, we can expect that
F will converge for smaller values of §; and ¢;, too. From experimental results, we have observed
that the map F converges to a unique solution even for the input ¢);’s which have somewhat large
values of key distances and axis differences. In particular, the iteration converges for all {Q;} with
g; < 1.4. Note that the key distance 1.4 radian is sufficient for most applications in practice; this
is because 1.4 radian in $2 is 2.8 radian in the real world, which allows quite large key distances.
When some key distances are larger than 2.8 radian, the animator may need to introduce some
more additional keyframes between the two keyframes.

In the case of the axis difference, we have observed the worst convergency at ¢; = 7 /2. Even for
this case, the condition #; < 1.4 makes the iteration converge. Of course, when the axis difference
is smaller, we may allow larger key distances, too. The relationship between the key distance 6 and
the axis difference ¢ is shown in Figures 1 and 2. For a given sequence of keyframe orientations
@Q:’s with ¢; = ¢ and #; = 6, the number of iterations is counted until the map F converges within
an error bound 10™*. Figures 1 and 2 show the required number of iterations for given values of 4
and ¢, respectively. For both cases, 10 keyframe orientations are used. In Figure 3, the required
number of iterations is also shown as the number of keyframes increases. We can easily notice that
the convergency does not depend on the number of keyframes. In most of the experiments, the
average convergence ratio A is observed to be about 1/2, and the solutions are usually obtained

within 10-20 iterations. Thus, it is possible to design rotational motions interactively.

of iterations

100 T 1 T T T T T
#=0.5
L 8 =1.0
< =1
@= 1.5 -
60 - g=2.0
40
20 e
0 | | | | | 1 | ¢’
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 2: The number of iterations as a function of the axis difference ¢

#t of iterations

40 \ T I | I | I T

i i, = B |
39 R
30" ‘@:179:_5——_

i 0= i s 2

25 —
20 + e ey g e SRS B AL
15?
10 -
5._ —
[] | | | i 1 | 1 | |

10 20 30 40 90 60 70 80 90 100
of keyframes

Figure 3: The number of iterations as a function of the number of keyframes

10

Figure 4: An example of quaternion B-spline interpolation

Figure 4 shows an example of motion interpolation for a rigid body, where the position and
orientation interpolation curves are constructed by the B-spline interpolation curves in R* and $°,

respectively. Six keyframes are used in this example, and they are shown in dark color.

6 Conclusion

The B-spline curves in R® have many useful geometric properties; however, extreme care need to
be taken to extend the curve construction scheme to S® so that the useful properties are preserved.
The de Casteljau type construction of B-spline curves does not generate a C?-continuous B-spline
quaternion curve. Furthermore, a cubic B-spline quaternion curve is totally different from the
Bézier quaternion curve which is defined by the curve boundary conditions.

By adapting a new construction method for B-spline quaternion curves (recently suggested
by the authors [KKS94a]), the C'*-continuity is guaranteed for the B-spline quaternion curves.
In this paper, we concentrated on the B-spline interpolation problem: how to find the B-spline
control points so that the generated B-spline quaternion curve interpolates a given sequence of
unit quaternions. Since the interpolation conditions are non-linear in the case of S2, we developed
an efficient iterative refinement method which can approximate the solution very precisely. The
iteration converges when the input orientations are given so that they satisfy certain difference
bounds; furthermore, these bounds actually cover most of important cases in practice. The iteration
itself converges very quickly with the convergence ratio X' being almost equal to % Thus, it is

possible to modify the keyframe orientations interactively.

References

[BCGH92] A. Barr, B. Currin, S. Gabril, and J. Hughes. Smooth interpolation of orientations

with angular velocity constraints using quaternions. In Computer Graphics (Proc. of

11

[BooT78]
[Cur72]

[GW91]

[Ham69]

[JT86]

[KKS94a

[KKS94b]

[KN]

[KN94]

[NH92]

[Ple89]

[Sch92]

[Sho85]

[Sho91]

SIGGRAPH ’92), pages 313-320, 1992.
C. Boor. A Practical Guide to Splines. Springer-Verlag, 1978.
M. Curtis. Matriz Groups. Spinger-Verlag, 1972.

M. Gleicher and A. Witkin. Through-the-lens camera control. In Computer Graphics
(Proc. of SIGGRAPH ’92), pages 331-340, 1991.

W.R. Hamilton. Elements of Quaternions (Volume I, II). Chelsea Publishing Company,
1969.

J.L. Junkins and J.D. Turner. Optimal Spacecraft Rotational Manueuvers. Elsevier,

1986.

M.J. Kim, M.5. Kim, and S5.Y. Shin. A general unit quaternion curve construction

scheme based on cumulative basis transformation. Technical Report CS/TR-94-88,

KAIST, Taejon 305-701, Korea, 1994.

M.J. Kim, M.S. Kim, and S.Y. Shin. Some remarks on the de casteljau construction

of unit quaternion curves. Technical Report CS/TR-94-89, KAIST, Taejon 305-701,
Korea, 1994,

M.S. Kim and K.W. Nam. Interpolating solid orientations with circular blending quater-

nion curves. to appear in Computer-Aided Design.

M.S. Kim and K.W. Nam. Hermite interpolation of solid orientations with circular

blending quaternion curves. In N.M. Thalmann and D. Thalmann (Eds.), editors,

(Proc. of CG Internatinal ’94). Spinger-Verlag, 1994.

G. Nielson and R. Heiland. Animated rotations using quaternions and splines on a 4d
sphere. In Programmirovanie(Russia), pages 17-27. Spinger-Verlag, July-August 1992.
English edition, Programming and Computer Software, Plenum Pub., New York.

D. Pletincks. Quaternion calculus as a basic tool in computer graphics. The Visual

Computer, 5(1):2-13, 1989.

J. Schlag. Using geometric constructions to interpolate orientation with quaternions.

In Graphics GEMS II, pages 377-380. Academic Press, 1992.

K. Shoemake. Animating rotation with quaternion curves. In Computer Graphics (Proc.

of SIGGRAPH °85), pages 245-254, 1985.

K. Shoemake. Quaternion calculus for animation. Math for SIGGRAPH (ACM SIG-
GRAPH 91 Course Notes #2), 1991.

12

[WJ93] W. Wang and B. Joe. Orientation interpolation in quaternion space using spherical
biarcs. In Proc. of Graphics Interface 93, pages 24-32, 1993.

13

A Preliminaries

The quaternion space H is a skew-field of elements ¢ = w + i + yj + z;%, w,z,y,z € R, with

element-wise addition and the following multiplication rules [Cur72, Ham69]:

L]
[\N]
I
&)
[
Il
I
—_

=0
k)
R

1l

T S o

ot

Il
Lol o T/
o ey
??"’) e._??: ol
o
Lo
Ld -

&

=

jaT

S

The multiplication is associative but non-commutative. A quaternion ¢ = w+ i +yJ + zk can also
be represented by a 4-dimensional point (w,z,y,z) or an ordered pair (w,v), where v is a three-
dimensional vector (z,y,z). Many interesting properties on the quaternion space can be found in

(Ham69]. One important property is that the unit quaternion space:

$3={geH||qll = /o = 1)

has a natural mapping to the rotation group SO(3). The rotation by angle § about an axis is
represented by a quaternion:

(8 . . 9)

= (cos —, &isin =).
? 7 2

For notational convenience, we represent a three-dimensional vector v = (z,y, z) as a quaternion
i+ yj + zk. Using the unit quaternion ¢ as a rotational operator, the vector % rotated from v by
¢ is given by the quaternion multiplication:

T=qugt .
We denote the rotation by ¢ as the rotational operator R,. Two successive rotations R, after R,

of a vector v is expressed as Ry,(R, (v)). That is, we have:

Ryy(Rg, (0) = eq1ve; 105" = (9201)0(g2q1) ™" = Ripg, (v) .

Thus, the quaternion product g2¢; represents the composite rotation of two successive rotations ¢
and ¢s.

The unit quaternion space S° in R* has the same local topology and geometry as that of the
rotation group SO(3). Since a quaternion can be represented by only four elements (in constrast
to the nine elements in the 3 x 3 rotation matrix), it is more compact and computationally more
efficient to use quaternions to represent the rotations in many applications Thus, we will use the

quaternion to represent a rotation. Since ¢ and —g represent the same rotation, the map from §°

14

to SO(3)is 2-to-1. This is a disadvantage of quaternion but does not cause any big problem. The
problem can be resolved if we are careful in identifying two antipol points, ¢ and —q.

The quaternion multiplication is not commutative; thus, we have to be very careful to preserve
the order of multiplications in a correct sequence. Let ¢1, ¢, -, ¢, be a sequence of rotations, each
of which is given in the global world coordinate frame. Then, the product ¢,q¢,_1---¢ represents
the net rotation of the successive rotations in the world coordinate. However, when each quaternion
g; represents a rotation in the local object coordinate frame (which is obtained by a sequence of
rotations ¢1,¢2, -, ¢-1), the product ¢1¢2 - - ¢, represents the net rotation. Note that the same
rotated result would be obtained by rotating in the sequence of rotations: ¢,,q,_1, -, q1, in the
global world coordinate frame. The order of quaternion multiplications is extremely confusing. The
rule is that the next rotation is multiplied to the left of the previous rotation if the rotation is done
in the global frame, and to the right of the previous rotation if it is done in the local frame.

A good representation for a rotation is to use a 3-dimensional vector, where a vector v represents
a rotation by an angle # = ||v|| about the axis & = v/||v||. This is a well-known formulation for
angular momentum in classical mechanics. The map from a rotation vector v to its corresponding

quaternion gives a natural map from R? to 93:
1 .1
v — (cos 5“1}H,vsm 5”?)”) : (15)

One revolution (rotation by 27) in the real space corresponds to the half revolution in S3, i.e.,
the rotation from ¢ to —g. For a complete revolution in $2, from ¢ to ¢ via —g, the real space
counterpart has two complete revolutions. The constant factor % of Equation (15) results from this
relationship between the real space and the space 5°. We may eliminate the factor % by specifying
the amount of rotation directly in S3; that is, the phrase "rotate by 8 in §°” means the rotation by
angle 20 in the real space. Therefore, a rotation vector v denotes the rotation by angle ||v|| about

the axis © € §%; the map (15) now takes a simpler form:
v = (cos o], bsin o],
which is identical to the definition of quaternion exponential [Ham69]:
exp(v) = (cos |[v]], Dsin [|v]) .

The quaternion exponential is a many-to-1 function. To find its inverse function, which is the

quaternion logarithm, we limit the domain within ||v|] < 7/2. The logarithm of a quaternion

15

¢ = (w, u), where w is the real part and u is the vector part, is defined by:

tan™!(|ull/w)d, if w £ 0

i, if w=20

oo = s {

vl

The power of a quaternion, ¢%, for a real exponent a, is defined by: ¢* = exp(alog gq).

16

