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Course Qutline

L

Orthogonal transforms on R2 and R3

Basic group theory (especially the finite quater-
nion group, orthogonal groups, and rotation
groups)

Fields (focusing on R, C, and finite fields)

Real Algebras (Basis construction, Normed di-
vision algebras)

S1 (unit complex numbers) and interpolation
of 2D rotations

Hamilton's Quaternion Algebra H

S3 (unit quaternions) and interpolation of 3D
rotations

Smooth Interpolation Techniques

Hamilton’s Quaternion Algebra
H = real vector space with basis {1, 1, j, k}.

Hamilton’s multiplication rules
&w“mm“wwul = 15k
turn H into a real associative (noncommutative)

algebra with identity.

Basis product table:

EHEEAFANTE
111 = J k
12| =1} k {—j
Jla|—=k|—-1]| <
kilk| 3 -1 | -1

Important Subspaces:
Re(H) = Span({1})

Im(H) = Span({s, j, k})




M
'Quaternion product: Special Products

1

H

% Let g1 = a1 +b1i+c1j+ dik =ag + vy, From the formula:

|

! . .

1and g> = ap + bai + cpj + dok = ap + vy, pg=(a+u)(b+v)

wWith vy,vo € Im(H). =ab—uev+tavt+dbutuxv

w
we get for imaginary quaternions:

Then in terms of familiar dot and cross products:
uv = -—uev-d4uxv.

q192 = (a1 + v1)(az + vo)
f : Also, for p,q € H:
i
= (a1ap— vy ® v2) + (a1vo2 4+ agvy + vy X va)
Pg—qp=2U X V=uv — vu.

= (Real Part) 4 (Imaginary Part).
Corollary: The center of H is R, ie.

Z(H) ={g€H: qp = pq Vp € H} = Re(H).




Conjugate and Norm

Forg=a+4+veH, let g=a-—v,

and let |q| be the standard Euclidean norm.

Inverses: For ¢ # 0, ¢~ ! = _%_u

Thus H* =H\ {0}, is a multiplicative group

For any p,g e H: pg=7gp.

Corollary 1: |pg] = |p|lg] (the norm is multiplica-
| tive).
1

Corollary 2: H has no zero divisors.

i

Corollary 3: S3 = {geH: |q =1} is a subgroup
of H*.

Corollary 4: H is a normed division algebra. (a
m::#m-amBm:mmo:m_ normed real algebra, without zero
+ divisors, and with multiplicative norm.)

£

Historical Aside

Hamilton was in fact looking for a 3-dimensional
normed division algebra (off and on for about ten
years!) He was hoping to generalize the complex
numbers, with their applications to 2D problems,
to 3D.

He realized that he needed the fourth dimension
while walking along the Royal Canal in Dublin, on
October 16th, 1843. Of that moment he writes:

"Ithen and there felt the galvanic circuit of thought
close; and the sparks which fell from it were the
fundamental equations between i, j, and K, exactly
such as I have used them ever since.”

He then proceeded, in a famous act of mathemat-
ical vandalism, to carve these equations into the
stone of the Brougham Bridge:




More Historical Notes:

i Hamilton spent the rest of his life obsessed with
m the quaternions and their applications to geome-
w ﬁJ\.
w

| They were fashionable for a time: They were a
mandatory examination topic at Dublin University,
and in some American Universities were the only
advanced mathematical topic taught.

A school of ‘quaternionists’ developed, emphasiz-
{ ing applications to physics.

Meanwhile, vector geometry flourished, and a war
of polemics ensued, with such luminaries as Kelvin
and Heaviside weighing in on the side of vectors.

Ultimately, the quaternionists lost, and the subject
acquired a slight tint of disgrace from which it has
w never quite recovered.

|

Modern Views

There are exactly four normed division algebras:
(over the real numbers)

the real numbers R, the complex numbers C, the
quaternions H, and the octonions O.

The ‘Dickson Doubling Process’' constructs each
of these algebras by doubling the dimension.

For example: complex numbers are represented
as pairs of reals: a + bi, and quaternions can be
represented as pairs of complex numbers: (a +
bi) + (c+ di)j, etc.

Although they have not become a standard col-
lege mathematics topic, the quaternions (and also

octonions) are being used increasingly in physics.

(see John Baez's web site)
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'Orthogonal Groups

Let V be a real inner product space of dimension n.

The orthogonal group O(V), the special orthogo-
nal group SO(V) = Ot (V), and its coset O~ (V)
are defined as follows:

OWV)={f:V—V : |[f)|=]v|, forall vV}

ot(V) ={feOo(V)

and

det(f) =1} = SO(V),

O~ (V)={feo(V) : det(f) = -1}.

Generation Theorem for O(V):

Let V be a real inner product space of dimension
n, and let f € O(V). Then f can be written as a
product of k reflections, with k& <mn, and k even if
fesSow).

Cayley’'s Theorem:

Let ¢ € O(H). Then there exist unit quaternions
91, ¢2 € 83 such that

#(z) = q1zg2, and ¢ € O (M)

or

¢(z) = q1Tg2, and ¢ € O~ (H).

Hamilton's Theorem:

Let ¢ € O(Im(H)). Then there exists a ¢ € §3
such that

¢(z) =qzg and ¢ e Ot (Im(H))

or

¢(xz) = —gzg and ¢ € O™ (Im(H)).




‘Quaternion Rotation Operator
First, let R, 9 be the rotation on R3

”mcoﬁ the axis (unit) vector u through an angle @
, (counterclockwise according to the right hand rule.)

'Now for g € S3, ¢ # +1, we can write uniquely:

) . 0
= oy Sin —
q nowm..T i Mc

~Where u is a unit vector in Im(H), and 9 € (0, 2x).
Then the function mnmav. = qxq, for z € Im(H)
coincides with the E:Q.Qo: Ry 0.

“Note: Rg(z) = R_q4(z).

This induces a 2-1 map:

83 — 50(3)

{a,—a} = Ryy

Interpolation of Rotations

Problem: Given rotation matrices Ai,...,A; in
SO(3), find a smooth path (curve) in SO(3) which
interpolates the A;.

It is not straightforward to work with parametrized
curves directly with the matrix representation, or
directly in SO(3).

An elegant solution is to pull back to S3 under the
2-1 map S3 — S0O(3).

An interpolation path is found on $3, and then the
Image on SO(3) is used to interpolate the rotation
matrices.




Applications to Computer Graphics
and Animation

In traditional animation, key-frames are specified

, fu< an animator, and then in-between frames are

supplied by other animators.

In computer graphics in-between frames can be
generated automatically using a variety of blending
and interpolation techniges.

Similarly, an object in 3D may have certain key-
orientations in a sequence. The computer anima-
tor may then want to insert in-between orienta-
tions. A

!
_
Each orientation corresponds to a 3 x 3 rotation
matrix, which in turn can be pulled back to a unit

quaternion.

' Thus smooth interpolation of unit quaternions yields

' smooth interpolation of orientations in 3D.

Specific Interpolation Paths
1) C° Spherical Linear Interpolation (Slerp)

Between each pair of quaternions a great circular
arc on S3 is used.

2) C1 Cubic Bezier Curve Analog

Nested Spherical Linear Interpolation replaces
the nested linear interpolation of De Casteljau's
algorithm. Cubic-type curves are splined together.

3) C2 Circular Arc Blending
Through each triple of quaternions a circular arc

on S3 is described. Pairs of circular arcs are then
blended using Slerp, producing a C? spline path.
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M”O_\_m_ﬁ”mﬂo:m in the demo:

|
1. identity

2. u=(0,0,1), 6
.”w. u=(0,1,0), 6

4. u=(1,0,0), 6

—m/2

/2

Spherical Linear Interpolation
Let ¢ = cos@ + sinfu € S3.
Then Slerp(1, q,t) = cos(6t) + sin(6t)u = ¢t.

Let p = cosé;1+sinfiuy, ¢ = cos by +sin bouy € 53,
and @ = the angle between p and g¢:

Then Slerp(p,q,t) = cos(6t)p + sin(6t)r where p
and r are a Gram-Schmidt basis:

, — 4~ Projpq
lg — projpq|

Exponential Form: Slerp(p, q,t) = p(p~1q)t

Another commonly used form:

sin(1—t)0 i sintf
sind L Ging ¥

Slerp(p, q,t) =




Cubic Bezier Curve Analog

| This is Ken Shoemake’s lifting to S3 of the de
.Mmmmﬁmc.mc algorithm for cubic parametric curves in
'Euclidean space.

 For control points Py,P;,P> and P; we define:

¢

]

%(t) = L(B;, Pyq,t) = 1—t)Pi4+tPig4,i=0,1,2,

i

and «a(t) = L(Bo(t), B1(t),1).

W._.:m_._ a(t) also has the Bernstein-Bezier form:

| (1-1)3Py+3(1 - )%Py +3(1 — )2P, + 3Ps

' For control quaternions g¢g,q1,92 and g3 we define
“a(t), Bi(t), and ~;(t) just as above, but with L
- replaced by Slerp.

W

§
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C! cubic spline analog

Let Py, P, and P, be key points. Then it is pos-
sible to insert control points Qg, Ry and @1, Ry
so that the two cubic Bezier curves given by the
control points: Py,Qo,Rp,P; and Py,Qq,R1,P5 are
Joined smoothly.

Since the Bezier curve is tangent to its control
polyline at the ends, we simply need to ensure
that:

Ro,P1 and @ are collinear.

All of this lifts to S%. We just need to make a
choice of tangent direction at P;.

Shomake’s choice of control quaternions:
Q1 = Bisect(Double(Py, P1), P»)
Ry = Double(Q1, P1)

where Double(p,q) = 2(pe q)qg — p and

P+q

Bisect(p, q) = 3




C? cubic spline analog ?

Note: In Euclidean space we can do much better:
the complete C2 cubic spline which passes through
a sequence of key points is found by solving a linear
system in the vector space of C? cubic splines,

This, however, does not lift to S3 since we no
longer have a vector space of functions to work

. with.

Further, the variational property of the complete
cubic spline does not lift to S$3, and there is no
known closed formula for such a curve on S3.

Circular Arc Blending

Each triple of distinct unit quaternions ¢;_1, g;, %41
determines a plane in H, whose intersection with
S3 is a circle.

Thus each pair of quaternions i, ¢;4-1 determines
two circular paths, say «;(t) and 3;(t), reparametrized
so that «;(0) = B;(0) = ¢; and (1) = Bi(1) =
qi+1-

Now let +;(t) = Slerp(ey(t), B;(t), f(t)), where f(t) =
t or f(t) = 3t2 — 213,

Finally, let «+(t) be the path obtained by glueing
together the pieces ~;(t).

Then ~(t) is C for f(t) =t and C2 for f(t) =
3t2 — 243,




Triple Product Identity:

qpqg =2(Peq)g— (geq)p

M Proof:

Apply g7 = |g|°2 =geq to p+g:

Weget: (p+q)(p+9)=@+q e(»+q)
Hﬁ_.ﬁ.*.mw..n._.m.a.

On the other hand, we have: (p+ q)(p + q)
=@+@+79 =rP+pPI+eP+qa

Thus: pg+gp=2pegq

Now right multiply by q: pgq + gpg = 2(p e q)q

k

| and replace p with p to get:

gpg=2(Peq)g—(geq)p
W_

Reflection maps

For g € S3 write:

Q@ =z —2(gez)q
(reflection in the hyperplane orthogonal to q.)
example: r1(z) =z —2(lez)l =z — 2Re(z) = —%
Now let Fy(xz) = gzq be the triple product function.
From the triple product identity we have:
Fy(z) =2 e q)q—T = —ry(T)
and rq(z) = —Fy(Z) = Fy(r1(x))).

Also: q1,go € S3: Tqy O Tgp = Fgy o Fg,,.




Generation Theorem for O(H):

Theorem: O(H) is generated by the functions

Fy(z) = qzq, ¢ € 83, and ri{z) = -=z.

Further, if ¢ € SO(H), then ¢ is a product of 2 or
4 maps Fy, q € S3.

Proof: Use rq = Fyory, together with the gen-
eration theorem for O(V) to see that O(H) is
generated by the Fy, ¢ € 83, and ;. For the
second part use rq, org, = Fy o Fy,.

Lemma: If ¢ € O(Im(H)), then v extends uniquely

to 9 € O(H) such that ¢ € Ot (Im(H)) < ¢ e
ot (H).

Proof:  Define ¢(z) = z if z € Re(H), and %(z) =
Y(z) if € Im(H). Then if g = a+v we define
P(a+v) = a+ ¥(v). One can see from the
form of the matrix of ¢ that det()) = det(<).

Proof of Cayley’'s Theorem
Cayley’'s Theorem:

Let ¢ € O(H). Then there exist unit quaternions
q1, ¢2 € S3 such that

#(z) = q1zgz, and ¢ € OF(H)

or

¢(z) = q1Zq2, and ¢ € O~ (H).

Proof: If ¢ € OF then ¢(z) = (pop1)z(pyps) or

¢(z) = (pap3p2p1)z(p1pop3ps). In either case,
¢(z) = g1z90, With some q1, o € S3. If p € O~
then ¢ory € OF, hence ¢(—z) = ¢pori(z) =
p1zp2, for some py, py € S3, by part i). Then
¢(z) = p1(~ZT)p2 = (—p1)Zp>.




Proof of Hamilton’s Theorem: AXis and Angle

e (e T LS

Hamilton's Theorem: Forg=a-+4+v e 83
Let ¢ € O(/m(H)). Then there exists a ¢ € S3 Ry =1 (identity) & g = +1.
such that

If Rg # 1 then 0 # ¢ —g = 2v € Im(H), and

¢(z) = qzg and ¢ € OT(Im(H))
Rg(2v) = Rq(¢—7) = qqg—q@ g = q — 7.

or
¢(z) = —gzg and ¢ € O~ (Im(H)). Thus the line Rv is fixed by Ry.
i
3 — 8 iné
Proof: Let ¢ € O+(Im(H))). Then ¢ € O+ (H), For ¢ € 5%\ {£1}, ¢=cosz +sinzu
SO ¢(z) = q1zqp With g1, ¢ € S3. From o(a + ) . .
v) = a+ ¢(v), we have $(1) = 1. So qylgp = with |u| =1 and 8 € (0, 2~) is unique.

1— g =g7'. So d(z) = gzg = ¢(z) = qu7q.

If ¢ € O~ (Im(H))), then by checking determi-
nants we have —¢ € OFT(Im(H))). So ¢(z) =
—qzq.

Further, for x € I'm(H) we can write

Rg(x) = cosfx+sinfu X x + (1 — cos@)(u e x)u

e e

for all x € I'm(H).




: e B — «in 8
. Proof: Let a = coss and B = sin 5.

| Then: a? — 82 = cos 8, 2a8 = sin 6,
and 28 =1 —cosé.

So Ry(x) = (a+ Bu)x(a — pu)

= o?x + af(ux — xu) — f2uxu

|

= a?x + af(2u x x) — B2(2(X e u)u — (u e W)X),
(from the triple product identity)

= a®x + 2af(u x x) — f2(x — 2(x e u)u)

= (o? — f2)x + 2aB(u x x) + 262(x e u)u

= cosfx +sinfu x x + (1 — cos ) (ue x)u.

Corollary: If |x| =1 and uex = 0, then:

Ry(x) ex = cos8.

Reference:

M. Koecher and R. Remmert:
“Hamilton’s Quaternions”,
(Chapter 7 in the book “Numbers”)
Springer GTM 123.
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