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Charting the 3-Sphere—An Exposition
for Undergraduates

Louis Zulli

Most people are familiar with the use of latitude and longitude in locating and
naming points on the surface of the Earth, which, mathematically at least, is
considered to be a perfectly round two-dimensional sphere. This article is about a
similar coordinate system on the 3-sphere S2, the set of points in four-dimensional
Euclidean space that lie exactly one unit from the origin. S is a rich and beautiful
space, and an exploration of it, even at the level of this introductory article,
involves a wealth of interesting mathematics. Indeed, here are just some of the
mathematical players who will appear in the brief exposition we’re about to
present: numbers—real, complex and quaternion; matrices—real and complex,
orthogonal and unitary; linear algebra—vector spaces, subspaces, inner products,
traces, eigenvalues, eigenvectors, diagonalization and the matrix exponential; group
theory—conjugation and conjugacy classes; geometry—intrinsic distance, tangent
spaces and the exponential map. Quite a lot of mathematics in a short expository
paper about a single three-dimensional space—and we could have gone much
further. In fact, the main difficulty in writing this paper was knowing when to say
‘Enough!’.

Which brings me to the point of this paper. I wrote this paper as a paper to be
studied by undergraduate Mathematics Majors in a Senior Seminar, Of course, I
hope that this article will be read by other people in other contexts as well, but my
focus while writing this paper was fixed on the Senior Seminar, and I think that
this focus is reflected in the paper’s style. In particular, this paper is meant to be
read and discussed by a group of students, so that all might benefit from the
sharing of knowledge, and so that confusions might be quickly resolved and
obstacles overcome. (I also assumed that there would be a faculty member present
to help the students navigate through some of the paper’s more treacherous
passages.) I did not attempt to make this paper either self-contained or linear. This
is because few topics in mathematics are truly self-contained, and because mathe-
matics as a whole is decidedly non-linear. Throughout the paper there are terms
and facts borrowed from many branches of mathematics, and there is also the
occasional tidbit, usually parenthesized, meant to entice the readers to explore
new territories in the mathematical kingdom. There are also many verifications left
to the readers; most of these verifications are calculations. Having said all this, I
feel that I should add that I tried to organize the paper so as to assist the readers
in learning the material, and that I attempted to explain, at least informally, most
of the technical terms in the article. I also tried to give proofs, or sketches of
proofs, of most of the claims made within. At the end of the paper is a short list of
references, which I include mainly as an act of basic decency. My hope is that the
readers already have their own favarite sources of mathematical knowledge, and
that they will consult these favorite sources as needed. I was inspired to write this
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article after reading the first dozen pages of [1]. In some sense, those pages
provided an outline for this paper. (After writing this article I discovered a similar
treatment in Chapter 8 of [2]. A reading of that chapter would be an excellent

supplement to this exposition.)

1. S' AND SO(2). Before confronting the 3-sphere S in R*, let’s first consider the
familiar 1-sphere (unit circle) S in R% (This circle will reappear later, as the
“great circle” in S” containing the “Prime Meridian.”) Let z = x + iy be a complex
number, which we will identify with the point z = (x, y) in R% Sometimes we’ll
also think of z = (x, y) as being the vector 7 in R? from the origin to (x, y). There
is a well-known correspondence (bijection) between the complex numbers and

certain 2 X 2 matrices of real numbers:

z=x+£yeC=R2<—>Z=(; _i) € M,(R).

(The notational convention employed here is used throughout this article. That is,
points in spaces are denoted by lowercase letters and matrices by uppercase
letters. The passage from a point to a matrix representation of that point is
indicated by capitalization.) This correspondence is actually a field isomorphism,
meaning that it respects addition and multiplication. Via this correspondence we
obtain a matrix model of C, which we can also view as a matrix model of R2

In R? there is an inner product, the ordinary dot product of vectors, and this
inner product is quite helpful when one does geometry in R2 For vectors
Zy = (xpy)) and 2; = (x,,¥,) in R?, 2, -7, = (2}, Z,) = x,%, + y,¥,. If we treat
these same vectors as complex numbers z; =x, + iy, and z, = x, + iy, then the
dot product can be computed as {z;, z,) = 3(z,%, + Z,z,). What is the formula
for this standard inner product in the matrix model of R?? It is not difficult to
verify that (Z,, Z,) = 3tr(Z,Z]) exactly corresponds to (z,, z,) = (2,3, + 7,2,),
where Z] denotes the transpose of Z,, and tr(Z,ZT) denotes the trace of 2.2,
the sum of the elements on the main diagonal of Z,Z7. Using the inner product
on R? we can com}gute the norm (length) |z| of a complex number (vector) z € RZ
By definition, |z]” = (z,z). In our matrix model of R? this becomes [Z]*
= 3tr(ZZ7), which simplifies to det(Z), the determinant of Z, because of the

special form which Z has. So |Z|? = det(Z).
By definition, §' = {z € C: |z| = 1} = {Z € R%: [Z] = 1}; this is the unit circle

in the plane RZ? In the matrix model of R? ‘this corresponds to {Z = ( = );

¥ x
det(Z) = 1}. This set of matrices can also be described as {M e M,(R): MMT =
I,det(M) = 1}). A square matrix M of real numbers that satisfies the equation
MMT =1 is called an orthogonal matrix, and its determinant is necessarily 1 or
—1. Those orthogonal matrices with determinant 1 are called special orthogonal
matrices. Thus §' ¢ C = R? corresponds to the group of 2 X 2 special orthogonal
matrices, which is denoted SO(2). Furthermore, the correspondence is a group
isomorphism, where the operation in both groups is multiplication. It is worth
knowing that SO(n) can also be thought of as the group of orientation-preserving
linear isometries of R”, that is, as the group of orientation-preserving rigid motions
of R" that fix the origin. In R? the only such motions are rotations about the
origin, and there is one such rotation for each point on the unit circle S'. So
perhaps it’s not surprising that S! is isomorphic to the group SO(2).
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2. S AND SU(2). Now let v=x + iy + jz + kt be a quaternion, which we will
identify with the point v =(x,y,z¢) in R% and sometimes with the vector
U= (v, v,) € C%, where v; =x + iy and v, = z + it. As above, there is a corre-
spondence between the quaternions and certain 2 X 2 matrices of complex num-
bers. In this case, the correspondence is:

o v v
u=x+iy+jz+krEH=R4<—rV=( .; ;) € M,(C),
2 1
where v, =x + iy and v, =z + it. This correspondence preserves addition and
multiplication; it is an isomorphism of division rings. (A division ring is a “possibly
non-commutative field’—multiplication might not be commutative but all the

other field axioms are satisfied.) Via this correspondence we obtain a matrix model

of R*. In this model, the ordinary Euclidean inner product becomes (V},V,) =
1tr(V, V), and, as above, [V]? = det(V).

By definition, $° ={v € H: |v] = 1) = {T € R* (0] = 1); this is the unit 3-
sphere in four-dimensional space. Note that §* is a (non-commutative) group via
quaternion multiplication. In the matrix model of R*, S? corresponds to {V =
(_"‘ﬁz ;f)eMz(C): det(V') = 1}, which can also be described as {M € M,(C):
MMT = I,det(M) = 1}. This matrix group is denoted SU(2), and is called the
two-dimensional special unitary group. The correspondence S* o SU(2) defined
above is a group isomorphism. Because of this, we will often blur the distinction
between §° and SU(2). In particular, we will often consider points in S to be

matrices, labeling them with uppercase letters.

3. DISTANCE, PARALLELS AND MERIDIANS IN S*. We can already compute
the distance in R* between points v and w in §°. This is just |v — w|, or, in our
matrix formulation, [det(V — W)]'/2. This distance is simply the length of a vector
in R* from v to w. But such a vector intersects S° only at v and w, and its length is
not the distance in §* from v to w. (The distinction between these two notions of
distance is easily seen in analogy: The distance across the surface of the Earth
from Lisbon to Vladivostok is greater than the distance between those cities were
tunneling through the Earth allowed.) How can we calculate dg:(v, w), the so-called
intrinsic distance from v to w in §’? Consider a two-dimensional plane II
containing v, w and the origin O in R*. This plane will be unique unless w = —u,
but uniqueness of I1 is not required. What is IT N §?, the intersection of IT and §3
in R*? I1 N S? lies within both II and S but it is easier to analyze within II,
where it is just the set of points in IT one unit from the origin O. Thus IT N S3 is
just the unit circle in II. In 3 the circle I1 N §° is called a great circle, and the
key fact that we need is that this circle provides the shortest path within §* from v
to w. Accepting this as true, it is then easy to compute dg:(v, w), by focusing once
again on the plane II. Since v and w lie on the unit circle in II, the distance
between them along that circle is exactly the radian measure 6 of the (smaller)
undirected angle vOw in II, by the very definition of radian measure. See Figure 1,
From the geometric dot product formula, we obtain 8 = cos™'({v, w)), since v and
w are unit vectors. Thus dgs(v, w) = cos™'({v,w)), or, in our matrix formulation,
ds:(V, W) = cos™ ' (Gtr(VIW T)).

With this distance formula in hand, we can begin charting 52 Since the identity
matrix J corresponds to the point (1,0,0,0) €S> ¢ R, the positive x-axis in R*
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passes through /. We will view I as the “North Pole” in our model of §*—not
surprisingly, —I will be the “South Pole.” For L €[0, 7], let &, = {(V € §%
dss(V, I) = L}). We will call &, the parallel in S* at latitude L. Referring to the
distance L as latitude is quite reasonable, since not only is L the distance in §°
from ¥ to I, but it’s also the radian measure of angle JOV. (So we’ll be measuring
our latitudes down from the North Pole, rather than up and down from the
Equator as is customary on Earth.) &, = ([}, that is, [ is the only point in S? at
latitude 0, since it's the only point in S* whose distance from [ is zero. Fo={-1},
although perhaps it is not immediately apparent that —/ is the only point in §? at
distance o from I. We will refer to &, /2 as the Equator in §°, and use the symbol
& to denote this special parallel. It is helpful to have several descriptions of &,
at one’s fingertips, in particular: &, = (V' € §%: tr(VV) = cos(L)} and P, =
Knygn)ES3gRﬂx=mML»meﬂwﬁmuﬁm%ewommmmmmmwe
conclude that all points on a given parallel in S3 have the same trace, and that
lies on the Equator & in $° if and only if tr()) = 0. From the second reformula-
tion we see that &, is a two-dimensional sphere of radius sin(L) centered at
(cos(L), 0,0, 0) within the hyperplane x = cos(L) in R*. (If L =0 or L = 7 this
sphere has radius 0, so &, and %, are indeed one point sets.) In particular, & is
just the unit 2-sphere in the three-dimensional subspace of R* spanned by the y, z
and ¢ axes—or equivalently, & is the set of pure imaginary unit quaternions, that
is, the unit quaternions of the form iy + jz + k¢. From the second reformulation of
&, we can also conclude that §% = U, ., %, that is, that every point in 3 lies
on some parallel. This is because x € [—1, lj for every point (x, y, z,£) € §3 ¢ RY,
so x = cos(L) for some L € [0, 7). Clearly &, N#,, = if L # L', so in fact
each point in §3 lies on a unique parallel.

Nowlet E € &. By the meridian #; at longitude E we mean the set of points in
5% of the form cos(6)] + sin(8)E, for 6 € [0, 7]. (Notice that, once again, we're
deviating slightly from the convention used on Earth. To us, the longitude of a
meridian in S° is simply the point of intersection of that meridian with the
Equator. If an analogous system were used on Earth, then the meridian containing
Buffalo, N.Y. would be called “Quito, Ecuador” rather than “T8°W.) It is easy to
check that .#; intersects 27, only at the point cos(L)J + sin(L)E, and that
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My NAp = {£I}if E + E'. To see that §* = U ;4 4, that is, that every point

V € 83 lies on at least one meridian, one could argue geometrically as follows:
Choose a plane IT in R* containing I, V and the origin O. As before, IT will be
unique if ¥ # £/, but uniqueness of Il is not required. Let R> denote the
three-dimensional subspace of R* spanned by the y, z and t axes, so that
R* N §* =&, Clearly IT ¢ R? since 7 € IT but I & R, Since IT N R? is necessar-
ily a subspace of II, either IT N R® = {O} or IT N R is a line through O. The first
of these possibilities is eliminated by dimensional considerations, so IT N R3 is a
line in R? containing O. This line intersects &, the unit sphere in R, in two points,
E and —E. Since (I nR*) N & = (I1 N $*) N &, the great circle I1 N 3, which
contains V, intersects & at x+ E. Since I and E are orthogonal points on this circle
in II, each point on the circle can be expressed as cos(6)] + sin(#)E, for some
6 €[0,27] In particular, V' = cos(8)! + sin(8)E for some 8 €[0,27]. If 6
[0, 7] then V' €.#, and we’re done. Otherwise, 6 = 27 — §' with 6’ € [0, 7], and
substituting for 8, we obtain V' = cos(8')] + sin(6'X(—E), so V e _,.

Although this geometric argument demonstrates that each ¥ € §° lies on a
meridian, it may not provide the best procedure for actually calculating the point
E (or = E) naming that meridian. In the next section we’ll see another way to find
the meridian in question. For the moment though, we have established that each
point V¥ € §? = {+7} lies on a unique parallel %, and a unique meridian A, and
that .#; N = (V). Thus each such ¥ has a unique latitude L € [0, 7] and
longitude E € &, and furthermore, no other point in S* has the same latitude and

longitude.

4. CONJUGATION IN S §? is a much more interesting space than either S! or
§2, partly because it’s of a higher dimension than either of those spaces, but mostly
because of its group structure, which as we shall see, meshes quite nicely with the
geometry of the space. (As we saw in Section 1, the circle S' is also a group, but its
multiplication is commutative, making the overall structure of §! somewhat less
interesting than that of $°. And, perhaps surprisingly, S? does not admit any
group structure analogous to the structures on S' and S$2) In particular, we need
to understand how conjugation in S* interacts with the coordinate system we
constructed in the previous section. To this end, let C € §% and let C,; §3 - §?
denote the map V ~— CVC~!, which is called conjugation by C. Because
C & §%CCT =1, 50 C, is also the map ¥ — CVC'. For each C € §?, C, is a
group isomorphism—it’s easily seen to be a homomorphism and its inverse is
(C™1),. But, even better, C, is an isometry of 83, it preserves the distance
between points in §° That is, for any ¥ and W in $3 do(C,(V), C, (W) =
dg:(V, W). (This easily verified equality is a consequence of the fact that conjuga-
tion does not change the trace of a matrix.) Because conjugation is an isometry and
P, ={VeS du(l,V)=L),C, maps &, isometrically onto itself for each
L €[0, 7] and each C € S°. In fact, the collection of parallels in §? is precisely
the set of conjugacy classes in $°. That is, ¥ and W are conjugate in §° (meaning
W = C,(V)for some C € §3)if and only if V and W lie in the same paralle], that
is, if and only if 1" and W have the same latitude in S°. Before establishing this
fact, it is helpful to expand our terminology and notation. For L & [0, 7], let D,

denote the point ‘;L e-qu) € 5% and let @ =(D;: L €[0,7]}. Then & is also

the meridian JZD” , and we’ll refer to & as the Prime Meridian in §3, (We use the
letter ‘2’ because all the points D; in & are diagonal matrices.) Since D,
corresponds to (0,1,0,0) in R*, the positive y-axis passes through this point, and
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thus & is contained in the unit circle S§' ¢ R% In fact, 2 is precisely the unit
semi-circle in the closed upper half-plane of R2 It is worth noting that, for each
L €0, 7], 9 intersects the parallel &, at the single point D, . In particular, the
latitude of D, is L.

We claim that &, is precisely the conjugacy class of D, in §° We already know
that every conjugate of D, lies in 22,. What we need to show is that each point V'
in &, is conjugate to the diagonal matrix D,. This can be done as follows: First
off, the result is clearly true for L = 0 and L = 7, so we'll assume that L € (0, 7).
Since V is a 2 X 2 matrix, the characteristic polynomial of V is A? — tre(V)A +
det(V). Because V€%, CS° this becomes A — (2cos(L))A + 1, and the
quadratic formula yields two distinct eigenvalues, A, = cos(L) + i sin(L) = e’
and A, = A; = cos(L) - isin(L) = e~i%, Equip the complex vector space C? with
its usual hermitian inner product, and choose a unit eigenvector (z,, z,) for V
corresponding to the eigenvalue A;. Let C = (2 :’) Then det(C) = 1 because

(zy, z,) is a unit vector in C?, so C & §°. Since

. 1 i 7 . 1 RS
@ofo)-enfZ) - oenfz)-+fi) - (3).
cive= (4

o g for some @, B € C. But C™!'VC € 52, so we must have « =

and B =1,. That is, C"'VC = Dy, or equivalently, V = CD,C™, establishing the
claim. (It is worth remarking that the point C in S? conjugating D; to V is not
unique. In fact, the set of points in §* which conjugate D, to V is precisely CS?,
the coset containing C of the subgroup S' < S$° Continued exploration along
these lines leads to alternative measures of longitude in $3, and to the intriguing
equation & = §2 = §3/§1)

Having just examined the effect of conjugation on parallels in S?, we now turn
our attention to meridians. Here there is less work to do. The basic fact is: For
each C € 5% and E € &,C,(#,) =.#c gy That is, conjugation by C carries the
meridian at longitude E isometrically onto the meridian at longitude C, (E). Thus,
for each C € §°, C, can be thought of as a “rigid rotation” of § about its polar
axis. See Figure 2 for a schematic picture. Putting things together, what we have

]
|

Figure 2
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shown is that, for each C € §°, conjugation by C carries the point at latitude-
longitude (L, E) to the point at latitude-longitude (L, C, (E)).

Using conjugation we can now outline a second approach to finding the
longitude of an arbitrary point ¥ € §* — {+1]}. Let L denote the latitude of V, As
was shown above, there is a C in §° for which C,(D,) = V. Let E = C, (D, 5.
Then E has the same longitude as V, since D, has the same longitude as D, P
and conjugation takes meridians to meridians. Furthermore, E € &, since
D, ,, € & and conjugation preserves latitudes. Thus the longitude of V is E. For
an explicit formula, let (z,, z,) € C? be a unit eigenvector for V with eigenvalue

et Then
(2,2, — 2,%,) 2iz,,

e, -i(z,2, ~ 2,%,) |

E

5. THE EXPONENTIAL MAP. Let us return for a moment to the circle S! ¢ C =
RZ. By the tangent space to S* at 1, denoted T,(S?), we mean the set of all vectors
in R? that are tangent to S! at 1. Although it is illustrative to draw vectors in
T,(S") as tangent to S! at 1, we will consider tangent vectors as actually emanating
from the origin in R?. Thus each vector in T,(S?) corresponds to a vector lying in
the y-axis, or, in the language of complex numbers, to an imaginary number Iy. See
Figure 3. Via this identification, 7;(§") becomes a one-dimensional subspace of R?,
and we can use the identification to define a map from 7,(S") onto S'. Namely,
given iy representing a tangent vector to S! at 1, map iy to e € §'. This aptly
named exponential map Ti(S') — §' takes the zero vector in Ty(§") to 1 € §1,
takes the upward pointing tangent vector of length /2 to i € §', and takes the
downward pointing tangent vector of length 7/2 to —i € 5. Both tangent vectors
of length 7 in T,(S') are mapped to —1 € S'. Putting it somewhat informally, the
exponential map “wraps the tangent space 7,(S,) around S.” In particular, it
maps the interval [— i, wi] € T\(§') onto S, and the mapping is one-to-one
when restricted to (— i, 7i). This map T,(S§') - §! is a very special case of a

Sl

Figure 3
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standard construction in differential geometry. In fact, it is possible to define an
exponential map 7,(M) — M at any point p on any smooth manifold M. (Try
envisioning what the exponential map would look like on the 2-sphere and on the
torus.)

Now let’s return to S>. Since S* is a three-dimensional manifold, 7;(8%) is
isomorphic to R®. That is, there are three linearly independent directions for
tangent vectors to S at 1. As before we can (try to) picture vectors in 7,(5°) as
being tangent to S° at I, but in actuality we’ll treat these vectors as emanating
from the origin O in R% Since vectors tangent to §* at I are necessarily
orthogonal to the vector from O to I, we can think of T,(5?) as the collection of all
vectors in R* perpendicular to the x-axis, since this is the axis containing [ =
(1,0, 0,0). Thus T;(S?) can be identified with the three-dimensional subspace of R?
spanned by the y, z and ¢ axes. In the language of quaternions, T,(§3) corresponds
to the pure imaginary quaternions, those quaternions of the form &y + jz + kt. This
model allows a simple identification of T,(S?) with our familiar R>—simply view
the unit quaternions /, j and k as the standard unit vectors i, j and k in R%. (Via
this identification with R’, we see that 7,(5?) is more than just a real three-dimen-
sional vector space, it’s a “Lie algebra” over R, where the “bracket product” of
tangent vectors is just the classical cross product in R?.) In our matrix model of R?,

T,(8%) ={ _"’;2 It ¥y € R, v, € C}, where we no longer require that the matrices

have determinant 1, since tangent vectors need not be unit vectors.

Using this matrix formulation of 7,(S?), it is easy to define an exponential map
T;(5%) = §° Its just the map V¥~ exp(V), where exp(V) denotes the matrix
exponential of V, the same matrix exponential that is commonly introduced in
linear algebra to study systems of linear differential equations. In fact, for a
tangent vector ¥ # 0 in the closed ball of radius o about the origin in T,(S?), we
claim that exp(V) is the point in §° at latitude |V| and longitude V/|V| € &. (Of
course, if V= 0 then exp(V) = 1.) To verify this claim, let ¥ be such a tangent
vector, and let E denote the point V/[V| € & Then exp(V) = exp(|V|E) =
exp(IVICD,, ,,C™") (since all points in & are conjugate to D, ) =
exp(C(IVID,, ;,)C™') = Cexp(IVID, ,,)C! = CD,,C~!, where the final two
equalities reflect basic properties of the matrix exponential. All that remains is to
identify the latitude and longitude of CD,V[C'I, which, for notational convenience,
we’ll denote X. But this is easy. Since the latitude of Dy, is [V}, so is the latitude
of its conjugate X. And since C, carries D, »2 to E, it must carry D, to a point in
#, so that the longitude of X is E. This establishes the claim made above. What
it tells us is that the matrix exponential 7,(§*) — §3 maps the closed ball of radius
7 about the origin in T,(5°) onto S?, and that the restriction of this map to the

interior of that ball is one-to-one. Indeed, radii of the ball are carried isometrically

onto meridians in S, while concentric spheres (centered at the origin) within the
ball are mapped diffeomorphically onto the parallels in §°. So, in some sense, the
exponential map 7;(S%) — 5 “wraps T,(S%) around S?,”just as the map iy ~ e’”
did in the one-dimensional case. (In fact, the exponential map T,(5%) - 5% is an
extension of the exponential map 7,(S') — §') The inverse of the exponential
map carries 53 — {—1) diffeomorphically onto the open ball of radius « in TS
Thus it maps S3 — {—7}, which lies in four-dimensional space, onto an open ball in
R® This is analogous to mapping the surface of the Earth, which lies in three-
dimensional space, onto the two-dimensional page of an atlas, via equidistant polar
projection. So the exponential map provides another approach to “charting” the

3-sphere.
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6. CONCLUDING REMARKS. As I remarked in the introduction, there’s still
much more we could do. Discussions about Lie groups, group actions and fiber
bundles follow naturally from the material presented in this paper, as does a more
in-depth treatment of the geometry of § 3, But for this exposition, I think that now
is the right time to say ‘Enough!’. I hope that this article has provided you with a
better understanding (and a usable model) of the 3-sphere, and that you are
inspired to pursue further some of the ideas introduced above.
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