
Lecture 10

Main Points:

• Proof of Existence and Uniqeness of Osculating polynomials

• Divided differences with derivatives

• Newton form for osculating polynomial

Definition of the osculating polynomial

Instead of matching only values of a data function, we might want to also match derivative values. In the following
definition, we take repeated data values to mean that we are requiring consecutive matching of derivatives. It turns
out to be best to require derivatives in sequence, without any gaps, which is also referred to as Hermite interpolation.

Given any nondecreasing sequence of real numbers t0 ≤ t1 ≤ · · · ≤ td and a function g(t) with values g(ti) at these
numbers, suppose further that g is differentiable to order ri at each ti, where ri is determined by ri = 0 if ti < ti+1,
and ri = k if ti = ti+1 = · · · = ti+k and ti+k < ti+k+1. Then define an osculating polynomial p(t) with the data
sequence t0, t1, · · · , td and data function g(t) as a polynomial which satisfies:

p(j)(ti) = g(j)(ti) for i = 0, . . . , d, and j = 0, . . . , ri.

Note: If we change the order of the sequence in such a way that equal values are still consecutive, the definition
of the osculating polynomial is not affected. So we can allow changes in the order of the data as long as whenever
ti = tj , with i < j, then also ti = tk for all k satisfying i < k < j.

Existence and Uniqueness of the osculating polynomial

It is a fact that for any nondecreasing sequence t0 ≤ t1 ≤ · · · ≤ td of real numbers, and function g, the osculating
polynomial p(t) with data function g and data values t0, t1, · · · , td exists as an element of Pd, and is unique.

Proof of Existence and Uniqueness of the osculating polynomial

Just as with the interpolating polynomial, we can prove the existence and uniquesness of the osculating polynomial
using the standard basis and a linear system. In this case we need to specify both point values and derivative
values according to the data sequence. We will see that the coefficient matrix for this linear system has Confluent
Vandermonde determinant which is nonzero, again showing that the linear system has a unique solution.

The linear system may have some rows which come from equating values of a polynomial and its derivatives with
values of the data function g(t). Let’s suppose that t0 = t1 = t2 = u0 and t3 = t4 = u1.

a0 + a1u0 + a2u
2
0 + a3u

3
0 + a4u

4
0 = g(u0)

a1 + 2a2u0 + 3a3u
2
0 + 4a4u

3
0 = g′(u0)

2a2 + 6a3u0 + 12a4u
2
0 = g′′(u0)

a0 + a1u1 + a2u
2
1 + a3u

3
1 + a4u

4
1 = g(u1)

a1 + 2a2u1 + 3a3u
2
1 + 4a4u

3
1 = g′(u1)

The corresponding augmented matrix of the linear system would then look like:

1 u1 u2
0 u3

0 u4
0 | g(u0)

0 1 2u0 3u2
0 4u3

0 | g′(u0)
0 0 2 6u0 12u2

0 | g′′(u0)
1 u1 u2

1 u3
1 u4

1 | g(u1)
0 1 2u1 3u2

1 4u3
1 | g′(u1)

1



As we saw earlier, Confluent Vandermonde determinants were constructed in this way, and the determinants are
nonzero as long as the sequence of values are distinct. In order to keep them separate, since the ti values are
allowed to be equal in order to signify derivative matching, we can assign values u0, u1, . . . , uk to mean the distinct
values appearing in the the list of data values t0, . . . , td. If each such value ui appears with multiplicity mi then we
understand that if mi = 1 then there is only one regular Vandermonde row for ui, and if mi > 1 then there are also
some consecutive derivative rows with the value ui. The determinant of the coefficient matrix is then nonzero by the
Confluent Vandermonde product formula:

D(um1
0 um2

2 · · ·u
mk

k ) =
∏

1≤i<j≤n

(uj − ui)
mimj

k∏
i=1

(mi − 1)!! 6= 0,

where the double factorial means:
N !! = N !(N − 1)!(N − 2)! · · · 2!1!.

This completes the proof of existence and uniqueness of the osculating polynomial.

Divided Differences for the osculating polynomial

For a nondecreasing sequence t0 ≤ t1 ≤ · · · ≤ td, and data function g, the divided differences are defined in the same
way as they were for distinct values. In particular, we define the divided difference [t0, . . . , td]g to be the coefficient
of td in the osculating polynomial p(t) with data values t0, . . . , td, and data function g(t).

Recursive formula for the Divided Differences

For a nondecreasing sequence t0 ≤ t1 ≤ · · · ≤ td, and function g, the divided differences are defined using the same
recursion as for the interpolating polynomial. For t0 < td, we have:

[t0, t1, . . . , td]g =
[t1, t2, . . . , td]g − [t0, t1, . . . , td−1]g

td − t0
, for t0 < td,

and when t0 = td we have:

[t0, t1, . . . , td]g =
g(d)(t0)

d!
for t0 = td.

Newton form for the osculating polynomial

The Newton form for the osculating polynomial is identical to the one used for the interpolating polynomial, but
with the new interpretation of the divided differences, as indicated above.

p(t) = [t0]g + [t0, t1]g · (t− t0) + [t0, t1, t2]g · (t− t0)(t− t1) + · · ·+ [t0, t1, . . . , td]g · (t− t0)(t− t1) · · · (t− td−1).

Special cases of the osculating polynomial

When the ti are all distinct, the osculating polynomial reduces to the interpolating polynomial. At the other extreme,
when t0 = t1 = · · · = td, we have the Taylor polynomial:

p(t) = g(t0) + g′(t0)(t− t0) +
g′′(t0)

2!
(t− t0)2 + · · ·+ g(d)(t0)

d!
(t− t0)d

written in terms of the Taylor basis with parameter t0.

Examples:

2



• Let t0 = 0, t1 = 0, t2 = 0, t3 = 1, and t4 = 1. Find the osculating polynomial which agrees with the data
function g(t) for the above data values if g(0) = 4, g′(0) = 3 and g′′(0) = −2, and g(1) = 5, and g′(1) = −1.

We form the divided difference table (noting that
g′′(0)

2!
= −1):

0 4
3

0 4 −1
3 −1

0 4 −2 1
1 0

1 5 −2
−1

1 5

The Newton form is then

p(t) = 4 + 3(t− 0)− (t− 0)2 − (t− 0)3 + (t− 0)3(t− 1)

= 4 + 3t− t2 − t3 + t3(t− 1)

= 4 + 3t− t2 − 2t3 + t4

with derivatives:
p′(t) = 3− 2t− 6t2 + 4t3, and p′′(t) = −2− 12t + 12t2,

which can be seen to satisfy the original conditions.

• Note that the first three conditions g(0) = 4, g′(0) = 2 and g′′(0) = −1, in the previous example amount to
the construction of the quadratic Taylor polynomial:

p(t) = 4 + 3t− t2.

This illustrates the cumulative nature of the Newton form, since the requirement of more data simply adds
more terms to the Newton form.

Second proof of existence of oscuating polynomial

In the second proof we again appeal to the recursive form and use induction. This time we need to verify the
requirement about derivatives. The base case is the same as for interpolation: d = 0, with one data value t0, so
p(t) = [t0]g = g(t0) is constant. For d > 0 the proof breaks into two cases:

a) t0 = td (and thus for all i: t0 = ti = td.)
b) t0 < td.

In the first case we simply use the Taylor polynomial from Calculus. This conincides exactly with our definition for
the osculating polynomial. This shows existence of the osculating polynomial in the first case. So now we assume
t0 < td.

For the induction step we assume that p0(t) and p1(t) are osculating polynomials with sequences [t0, . . . , td−1] and
[t1, . . . , td] respectively. Then we form the same polynomial p(t):

p(t) =
t− t0
td − t0

p1(t) +
td − t

td − t0
p0(t).

According to the definition of the osculating polynomial, we now need to verify:

p(j)(ti) = g(j)(ti), j = 0, . . . , r

3



whenever ti = ti+1 = · · · = ti+r. In order to check this, we take some derivatives of p(t), to get:

p(j)(t) =
t− t0
td − t0

p
(j)
1 (t) +

td − t

td − t0
p
(j)
0 (t) + j · p

(j−1)
1 (t)− p

(j−1)
0 (t)

td − t0
.

Now to check that p(t) works, assume that we have ti = ti+1 = . . . = ti+r for some i and r. Case b) from above now
breaks into three cases:

i) ti = t0, ii) ti = td and iii) t0 < ti < td

For case i) we just plug ti = t0 into the derivative formula p(j)(t) and show that this equals g(j)(t0), for j = 0, . . . , r.

The first two terms give us the correct value, since p
(j)
0 (t0) = g(j)(t0) for j = 0, . . . , r since the sequence ti = ti+1 =

. . . = ti+r of equal values is part of the sequence for p0(t). The only slightly tricky part is to show that the last term
is zero. This follows from the fact that the sequence t1 = t2 = . . . = tr has length r − 1 and is inside the sequence

for p1(t), so p
(j−1)
1 (t0) = g(j−1)(t0) for j = 1, . . . , r.

The second case is symmetric to the first, and the third case is easier since the the sequences for p0(t) and p1(t) both
contain the equal values. This completes the existence part of the proof.

Before we proceed to the uniqueness proof, we establish an important fact about multiplicity of zeros of polynomials.

Multiplicity of zeros of polynomials

The usual notion of multiplicity of zero for a polynomial is given algebraically by the corresponding multiplicity of
a factor. For example, the polynomial

p(t) = 5(t− 1)2(t− 3)5

has a zero at t = 1 of multiplicity 2, and a zero at t = 3 of multiplicity 5. We can also capture this information by
using derivatives instead. In particular:

Definition: A polynomial p(t) has a zero of multiplicity r at t = c if p(c) = 0, p′(c) = 0, . . . , p(r−1)(c) = 0. In other
words:

p(j)(c) = 0, j = 0, . . . , r − 1,

where p(0)(t) = p(t).

Second proof of uniquess of oscuating polynomial

For the uniqueness proof we suppose that there are two osculating polynomials p(t) and q(t), and we consider the
difference

f(t) = p(t)− q(t).

Then f(t) is in Pd and we also have:

f (j)(ti) = p(j)(ti)− q(j)(ti) = g(j)(ti)− g(j)(ti) = 0, j = 0, . . . , r

whenever ti = ti+1 = · · · = ti+r. This means that the

Proof of the Newton form for osculating polynomial

In order to establish the Newton form, we

4



Lecture 6, Th Sep.22, 2011
Did Multiplicities of zeros, derivative form, proved lemma.

Defined the multiplicity of a zero for a function f at t = c to be r + 1, for r ≥ 0, if f(c) = f ′(c) = f ′′(c) = · · · =
f (r)(c) = 0. (Of course, f(t) = f (0)(t).)

Give examples of polynomials and also at least one trig function like f(t) = 1 − cos t at t = 0 with multiple zeros.
Show them what graphs of multiple zero points look like.

Then prove that a polynomial f(t) has a zero of multiplicity k ≥ 1 at t = c if and only if (t− c)k is a factor of f(t).

Continued with Newton form. Defined the general interpolation problem with derivatives (Hermite interpolation, or
osculation), ie.

Given data t0 ≤ t1 ≤ t2 ≤ · · · ≤ td, and a data function g(t) (with “enough derivatives”), does there exist a polynomial
p(t) ∈ Pd satisfying:

p(j)(ti) = g(j)(ti), j = 0, . . . , r

whenever ti = ti+1 = · · · = ti+r? If p(t) exists, it is also unique in Pd?

State answer as YES and YES! We did the case of strict inequality already, which is called simple interpolation. Now
we want to do it in the Newton Form, in the general case. This proof uses induction. First note that there are two
cases: a) t0 = td and b) t0 < td. In case a) we just use the Taylor polynomial, so there is nothing more to check. So
assume we are in case b).

Induction step: Assume above for one fewer data points (d instead of d + 1), or degree d − 1 (instead of d). Then
choose two such sets: t0 ≤ t1 ≤ t2 ≤ · · · ≤ td−1, and t1 ≤ t2 ≤ t3 ≤ · · · ≤ td. Associate the two solutions: p0(t) and
p1(t), respectively, to the above interpolation problem now in these two cases.

Then we show existence of p(t) with the formula:

p(t) =
t− t0
td − t0

p1(t) +
td − t

td − t0
p0(t).

stopped here.

Lecture 7, T Sep.27, 2011
Quiz 2 today. Then continue with proof from last time. Now we need to take a few derivatives of p(t), give formula
for p(j)(t) and check that it works, to get existence. After reviewing the general setup, we took the derivatives, to
get the formula

p(j)(t) =
t− t0
td − t0

p
(j)
1 (t) +

td − t

td − t0
p
(j)
0 (t) + j · p

(j−1)
1 (t)− p

(j−1)
0 (t)

td − t0
.

Now the proof proceeds by induction. So we can assume that p0(t) and p1(t) satisfy the interpolaton conditions for
their respective sequences. Now to check that p(t) works, assume that we have ti = ti+1 = . . . = ti+r for some i and
r. Case b) from above now breaks into three cases:

i) ti = t0, ii) ti = td and iii) t0 < ti < td

For case i) we just plug ti = t0 into the derivative formula p(j)(t) and show that this equals g(j)(t0), for j = 0, . . . , r.

The first two terms give us the correct value, since p
(j)
0 (t0) = g(j)(t0) for j = 0, . . . , r since the sequence ti = ti+1 =

. . . = ti+r of equal values is part of the sequence for p0(t). The only slightly tricky part is to show that the last term
is zero. This follows from the fact that the sequence t1 = t2 = . . . = tr has length r − 1 and is inside the sequence

for p1(t), so p
(j−1)
1 (t0) = g(j−1)(t0) for j = 1, . . . , r.

The second case is symmetric to the first, and the third case is easier since the the sequences for p0(t) and p1(t)
both contain the equal values. Based on a few questions, it was evident that at least a couple of students actually
followed this proof.

5



Lecture 8, Th Sep.29, 2011
Then uniqueness comes from looking at zeros with multiplicities in the difference p − q where p and q are both
satisfying the interpolation conditions as above. The difference must then have total zero multiplicity more than d,
so must be zero.

Now, make the definition of the operator: [t0, t1, . . . , td]g. This is defined as the coefficient of td in the interpolating
polynomial p(t) to the data sequence t0, t1, . . . , td for the data function g(t). Note: This is not necessarily the leading
coefficient, since the coefficient of td can be zero.

The recursive property of this operator shows that it is a divided difference and can proved using the definition of
p(t) above, by simply taking the coefficient of td on both sides of the equation:

p(t) =
t− t0
td − t0

p1(t) +
td − t

td − t0
p0(t).

Lecture 9, T Oct.4, 2011
First review all of the above, operator notation, cases, examples, etc.

Finally, construct the Newton form. This comes from looking at p(t) − p0(t). This difference can be factored
completely since it has d roots counting multiplicities. We get:

p(t)− p0(t) = C · (t− t0)(t− t1) · · · (t− td),

where the multiple factors are listed according to the equalities of the type ti = ti+1 = · · · = tr. Those come from
the lemma which equates the notion of multiplicity of zeros in terms of derivatives with the algebraic multiplicity.

Then talk about Project Part II, polynomial interpolation. Main point is that this can look bad for certain inputs.
You can make the graph of a parametric polynomial interpolation shoot off the screen wildly by moving one of the
points around. This effect will be mostly taken care of when we do Part III: Cubic Spline Interpolation.

Lecture 10, Th Oct.6, 2011

Today started with the derivation of the Leibniz Rule for divided differences in the case d = 2, with f = gh:

[t0, t1, t2]f = [t0]g[t0, t1, t2]h + [t0, t1]g[t1, t2]h + [t0, t1, t2]g[t2]h.

I point out that this can be looked at as a dot product of terms coming from the tables for computing each of
[t0, t1, t2]g and [t0, t1, t2]h by going along the top of the g table and down from right to left along the bottom of the
h table. They have a homework exercise to do this for some rational functions.

The proof is really cool! We start with the question: If p(t) is the interpolating polynomial to f at t0, t1, t2 and q(t)
and r(t) are the corresponding ones for g and h, can’t we just use qr for p? We check the interpolation conditions
and see that qr matchs f nicely at the ti’s. The problem is that it has the wrong degree, since it is only guaranteed
to be in P4, not P2. The cool part is that we can actually find p hiding inside the product qr if we multiply it out
very carefully! So, we write the Newton forms for q and r as follows:

q(t) = [t0]g + [t0, t1]g(t− t0) + [t0, t1, t2]g(t− t0)(t− t1),

r(t) = [t2]h + [t1, t2]h(t− t2) + [t0, t1, t2]h(t− t2)(t− t1).

Note: We can write r backwards like this since the order of the values ti does not matter, as we noted before when
proving the Newton form. Next we notice that the terms of degree 3 or higher in the product q(t)r(t) all vanish at
each of the ti. So the terms of degree at most 2 form a polynomial in P2 which meets all the conditions for p. By
the uniquness of p, this is indeed p. Now we simply extract the coefficient of t2 and get the Leibniz formula.

A student asked how this works for equal ti’s. Good question!

6


