
Lecture 11

Main Points:

• Osculating polynomial, second proof of existence and uniqueness

• Proof of Newton form for osculating polynomial

• Leibniz’ Rule with derivatives

Second proof of existence of osculating polynomial

In the second proof we again appeal to the recursive form and use induction. This time we need to verify the
requirement about derivatives. The base case is the same as for interpolation: d = 0, with one data value t0, so
p(t) = [t0]g = g(t0) is constant. For d > 0 the proof breaks into two cases:

a) t0 = td (and thus for all i: t0 = ti = td.)
b) t0 < td.

In the first case we simply use the Taylor polynomial from Calculus. This coincides exactly with our definition for
the osculating polynomial. This shows existence of the osculating polynomial in the first case. So now we assume
t0 < td.

For the induction step we assume that p0(t) and p1(t) are osculating polynomials with sequences [t0, . . . , td−1] and
[t1, . . . , td] respectively. Then we form the polynomial p(t):

p(t) =
t− t0
td − t0

p1(t) +
td − t

td − t0
p0(t).

According to the definition of the osculating polynomial, we now need to verify:

p(j)(ti) = g(j)(ti), j = 0, . . . , r

whenever ti = ti+1 = · · · = ti+r. In order to check this, we take some derivatives of p(t), to get:

p(j)(t) =
t− t0
td − t0

p
(j)
1 (t) +

td − t

td − t0
p
(j)
0 (t) + j · p

(j−1)
1 (t) − p

(j−1)
0 (t)

td − t0
.

Now to check that p(t) works, assume that we have ti = ti+1 = . . . = ti+r for some i and r. Case b) from above now
breaks into three cases:

i) ti = t0, ii) ti = td and iii) t0 < ti < td

For case i) we just plug ti = t0 into the derivative formula p(j)(t) and show that this equals g(j)(t0), for j = 0, . . . , r.

The first two terms give us the correct value, since p
(j)
0 (t0) = g(j)(t0) for j = 0, . . . , r since the sequence ti = ti+1 =

. . . = ti+r of equal values is part of the sequence for p0(t). The only slightly tricky part is to show that the last term
is zero. This follows from the fact that the sequence t1 = t2 = . . . = tr has length r − 1 and is inside the sequence

for p1(t), so p
(j−1)
1 (t0) = g(j−1)(t0) for j = 1, . . . , r.

The second case is symmetric to the first, and the third case is easier since the the sequences for p0(t) and p1(t) both
contain the equal values. This completes the existence part of the proof.

Second proof of uniquess of osculating polynomial
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For the uniqueness proof we suppose that there are two osculating polynomials p(t) and q(t), and we consider the
difference

f(t) = p(t) − q(t).

Then f(t) is in Pd and we also have:

f (j)(ti) = p(j)(ti) − q(j)(ti) = g(j)(ti) − g(j)(ti) = 0, j = 0, . . . , r

whenever ti = ti+1 = · · · = ti+r. By the above fact on multiplicities of zeros for polynomials, this says that whenever
there are r + 1 consecutive equal values ti = ti+1 = · · · = ti+r, then f(t) has a zero of multiplicity r + 1 at t = ti and
hence also has a factor of the form (t− ti)

r+1.

Since there are d + 1 values in the sequence t0, . . . , td we can group them into subsequences of equal values. Each
such subsequence then corresponds to a factor with exponent equal to the number of terms in the subsequence. The
total degree of the product of all such factors is then d + 1. But f(t) is in Pd and can only have degree at most d or
must be zero. So we conclude that f(t) is zero, and hence p(t) = q(t). This completes the uniqueness proof.

Proof of the Newton form for the osculating polynomial

In order to establish the Newton form, we proceed in the same way as for the interpolating polynomial. We assume
that p0(t) is the osculating polynomial with data values t0, . . . , td−1 and that p(t) is the osculating polynomial with
data values t0, . . . , td. Then we consider the polynomial f(t) = p(t) − p0(t). This polynomial has the property that

f(ti) = p(ti) − p0(ti) = 0, i = 0, . . . , d− 1,

but many of these values may be repeated. But we also have for the repeated values:

f (j)(ti) = p(j)(ti) − p
(j)
0 (ti) = 0, j = 0, . . . , r,

whenever ti = ti+1 = · · · = tr. So, by the fact about multiplicity of zeros, we can write

f(t) = p(t) − p0(t) = C · (t− t0)(t− t1) · · · (t− td−1),

where many of the factors may be repeated according to the correct multiplicities implied by the above. We can also
identify the constant C by equating coefficients of td on both sides to obtain

C = [t0, . . . , td]g.

Just as we saw with the interpolating polynomial, we can then write

p(t) = qd−1(t) + [t0, . . . , td]g · (t− t0)(t− t1) · · · (t− td−1),

where qd−1(t) = p0(t). Repeating this process for qd−1(t) we obtain

qd−1(t) = qd−2(t) + [t0, . . . , td−1]g · (t− t0)(t− t1) · · · (t− td−2)

and continuing in the same way we will arrive at the Newton form:

p(t) = [t0]g + [t0, t1]g · (t− t0) + [t0, t1, t2]g · (t− t0)(t− t1) + · · · + [t0, t1, . . . , td]g · (t− t0)(t− t1) · · · (t− td−1).

Leibniz’ Rule with repeated values in the divided differences.

Let f(t) = g(t)h(t). Then the divided differences with repeated values also satisfy the Leibniz Rule:

[ti, ti+1, . . . , ti+k]f =

i+k∑
r=i

([ti, . . . , tr]g)([tr, . . . , ti+k]h).

For degree d = 2 it is:
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[t0, t1, t2]f = [t0]g[t0, t1, t2]h + [t0, t1]g[t1, t2]h + [t0, t1, t2]g[t2]h.

We proved this in the case where all the data values ti were distinct, which used the Newton forms for interpolating
polynomials. Now we consider the case of repeated data values ti = ti+1 = · · · = ti+r which is used for Newton forms
of osculating polynomials.

The base case is still d = 0, and since there is only one data value we cannot have any repetition, so it is identical
to the previous case. For the rest of the proof, we can proceed exactly as before, using a product of Newton forms
for osculating polynomials, and using the uniqueness of the osculating polynomial in Pd.

Examples:

• Define the functions:

f(t) = (t− 2)2+ · 1

t
, g(t) = (t− 2)2+, and h(t) =

1

t
.

We will find the osculating polynomials with the data [1, 1, 3, 3] and data functions f(t), g(t), and h(t). Call
these osculating polynomials p(t), q(t), and r(t) respectively. We will verify the Leibniz Rule for [1, 1, 3, 3]f .
First, we have the following divided difference tables:

f(t) :

1 0
0

1 0 1
2

1
6

1
18

3 1
3

7
36

5
9

3 1
3

g(t) :

1 0
0

1 0 1
4

1
2

1
4

3 1 3
4

2
3 1

and h(t) :

1 1
−1

1 1 1
3

− 1
3 − 1

9
3 1

3
1
9

− 1
9

3 1
3

Then we have:

[1, 1, 3, 3]f =
1

18

and
[1]g[1, 1, 3, 3]h + [1, 1]g[1, 3, 3]h + [1, 1, 3]g[3, 3]h + [1, 1, 3, 3]g[3]h

= 0 · (−1

9
) + 0 · 1

9
+

1

4
· (−1

9
) +

1

4
· (

1

3
) =

1

18
.

We can also verify that the osculating polynomial p(t) can be found as the appropriate terms taken from the
product q(t)r(t). Those polynomials can be obtained with Newton forms. For p(t) and q(t) we use the tables
above to get:

p(t) = 0 + 0 · (t− 1) +
1

12
(t− 1)2 +

1

18
(t− 1)2(t− 3),

q(t) = 0 + 0 · (t− 1) +
1

4
(t− 1)2 +

1

4
(t− 1)2(t− 3).

For r(t) we do the divided difference table and Newton form in the reverse order, as we did in the proof.

3 1
3

− 1
9

3 1
3

1
9

− 1
3 − 1

9
1 1 1

3
−1

1 1

So we can write the Newton form:

r(t) =
1

3
− 1

9
(t− 3) +

1

9
(t− 3)2 − 1

9
(t− 3)2(t− 1).
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Then we write the terms from q(t)r(t) which consist of products which do not have a zero of multiplicity two
at both of the values t = 1 and t = 3. So, we are avoiding the terms which contain factors (t− 1)2(t− 3)2. In
the proof we called those terms that we are avoiding G(t) and the remaining terms F (t). Thus we have:

F (t) =
1

3
· 1

4
(t− 1)2 +

1

3
· 1

4
(t− 1)2(t− 3) − 1

9
(t− 3)

1

4
(t− 1)2.

At this point, we recall that

f(t) = (t− 2)2+ · 1

t
,

and thus

f ′(t) = 2(t− 2)1+ · 1

t
+ (t− 2)2+ · (− 1

t2
).

We would like to verify that indeed F (t) = p(t). This can be done by checking that F (t) satisfies the osculation
conditions for the data [1, 1, 3, 3] with data function f(t). We can check that

F (1) = 0 = f(1), and F (3) =
1

3
= f(3).

Taking a derivative we have:

F ′(t) =
1

6
(t− 1) +

1

12

[
2(t− 1)(t− 3) + (t− 1)2

]
− 1

36

[
(t− 1)2 + 2(t− 3)(t− 1)

]
,

and we can also verify that:

F ′(1) = 0 = f ′(1), and F ′(3) =
5

9
= f ′(3).

Thus, since F (t) is in P3 and it satisfies the conditions above, and the osculating polnomial is unique in P3, we
must have F (t) = p(t). Of course, it is also simple to check that the expression for F (t) above can be simplified
to obtain:

F (t) =
1

12
(t− 1)2 +

1

18
(t− 1)2(t− 3) = p(t).
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