Lecture 14

Main Points:

- Review of bases for splines with continuity
- Affine functions
- Polar forms for polynomials
- Polar forms for Bezier curves

Spline vector spaces with continuity

Recall that the vector space $P_{d,r}^k[u_0, \ldots, u_k]$ of piecewise polynomial functions, also called spline functions, has standard basis given by the union of the sets: i) standard basis of P_d , ii) the shifted power functions $(t - u_i)_+^j$, $j = r + 1, \ldots, d$, $i = 1, \ldots, k - 1$. For example, $P_{3,1}^4[0, 1, 2, 3, 4]$ has basis:

$$\{1, t, t^2, t^3, (t-1)^2_+, (t-1)^3_+, (t-2)^2_+, (t-2)^3_+, (t-3)^2_+, (t-3)^3_+\}$$

Affine functions

An affine function f(x) can be defined as:

$$f(x) = \alpha x + \beta$$

where α and β are constants.

An important property of affine functions is that they respect affine sums. In particular:

$$f((1-t)a + tb) = (1-t)f(a) + tf(b).$$

Polar forms for polynomials

A polar form $F[u_1, \ldots, u_d]$ for a polynomial f(t) in P_d is a multivariable multi-valued function satisfying the following properties:

- (symmetry) $F[u_{\sigma(1)}, \ldots, u_{\sigma(d)}] = F[u_1, \ldots, u_d]$ for any permutation σ of the set $\{1, 2, \ldots, d\}$.
- (substitution) $F[t, \ldots, t] = f(t)$
- (affine) $F[u_1, \ldots, x, \ldots, u_d]$ is an affine function of x, where x replaces the variable u_i , for any i, and the other u_j are treated as constant. The coefficients in the affine function then depend on the the u_j for $j \neq i$.

Examples:

- The polar form of f(t) = 1 in P_d is $F[u_1, \ldots, u_d] = 1$.
- The polar form of f(t) = t in P_d is

$$F[u_1,\ldots,u_d] = \frac{u_1 + u_2 + \cdots + u_d}{d}$$

• The polar form of $f(t) = t^d$ in P_d is

$$F[u_1,\ldots,u_d]=u_1u_2\cdots u_d.$$

• The polar form of $f(t) = t^2$ in P_3 is

$$F[u_1, u_2, u_3] = \frac{u_1 u_2 + u_1 u_3 + u_2 u_3}{3}.$$

• The polar form of $f(t) = t^3$ in P_4 is

$$F[u_1, u_2, u_3, u_4] = \frac{u_1 u_2 u_3 + u_1 u_2 u_4 + u_1 u_3 u_4 + u_2 u_3 u_4}{4}.$$

Polar forms for the standard basis

We can find polar forms for any polynomial in the standard basis of P_d as indicated in the above examples. For $f(t) = t^j$ in P_d , we simply form the sum of all products of exactly j variables from the list u_1, \ldots, u_d , and then divide by $\binom{d}{i}$. We can write this as:

$$F[u_1,\ldots,u_d] = \frac{u_1u_2\cdots u_j + \cdots + u_{d-j+1}u_{d-j}\cdots u_d}{\binom{d}{j}}$$

Polar forms for Bernstein basis

For $f(t) = B_i^d(t) = {d \choose i}(1-t)^{d-i}t^i$, we can form the polar form $F[u_1, \ldots, u_d]$ which consists of the sum of all terms which are products of d-i factors of the type $(1-u_j)$ and i factors of the type u_j . We can write this as:

$$F[u_1, \dots, u_d] = (1 - u_1)(1 - u_2) \cdots (1 - u_{d-i})u_{d-i+1} \cdots u_d$$

$$\vdots$$

$$+ (1 - u_{i+1})(1 - u_{i+2} \cdots (1 - u_d)u_1u_2 \cdots u_i.$$

Examples:

• The polar form of $f(t) = B_1^2(t) = 2(1-t)t$ in P_2 is

$$F[u_1, u_2] = (1 - u_1)u_2 + (1 - u_2)u_1.$$

• The polar form of $f(t) = B_1^3(t) = 3(1-t)^2 t$ in P_3 is $F[u_1, u_2, u_3] = (1-u_1)(1-u_2)u_3 + (1-u_1)(1-u_3)u_2(1-u_2)(1-u_3)u_1.$

• The polar form of
$$f(t) = B_2^4(t) = 6(1-t)^2t^2$$
 in P_4 is

$$F[u_1, u_2, u_3, u_4] = (1 - u_1)(1 - u_2)u_3u_4 + (1 - u_1)(1 - u_3)u_2u_4 + (1 - u_1)(1 - u_4)u_2u_3 + (1 - u_2)(1 - u_3)u_1u_4 + (1 - u_2)(1 - u_4)u_1u_3 + (1 - u_3)(1 - u_4)u_1u_2.$$

Polar forms for any polynomial

We define a polar form for a general polynomial to be the sum of polar forms with coefficients with respect to a basis. Specifically, if

$$f(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_d t^d$$

then a polar form is:

$$F[u_1, \dots, u_d] = a_0 F_0 + a_1 F_1 + \dots + a_d F_d,$$

where each F_i is a polar form for t^i in d variables u_1, \ldots, u_d .

Examples:

• A polar form for $f(t) = 2 - 3t + 4t^2$ is:

$$F[u_1, u_2] = 2 - 3\left(\frac{u_1 + u_2}{2}\right) + 4u_1u_2.$$

Existence and Uniqueness Theorem for Polar Forms of polynomials

For any polynomial f(t) in P_d , there is exactly one multi-variable function $F[u_1, \ldots, u_d]$, called the polar form of f, which satisfies the three defining properties.