
Lecture 19

Main Points:

• Further examples of quadratic Bezier Curves

More Examples:

• Assume that a Bezier curve has implicit form y = x2, and we know that P0 = (−2, 4) and P1 = (− 1
2 ,−2). We

will find the third control point P2.

Note: Once we specify P0 = (−2, 4), we cannot choose P1 arbitrarily since it must lie on the tangent line to
y = x2 at the point (−2, 4). Since the derivative y′ = 2x has value −4 at x = −2, we see that this tangent line
has equation y = −4x− 4 and indeed (− 1

2 ,−2) is on this line.

Next, we need to find a point P2, on y = x2, which must have the property that the tangent line at P2 passes
through P1. Suppose that the point P2 is written:

P2 = (a, b) = (a, a2).

Then the tangent line at P2 = (a, a2) has slope 2a and can be written:

y = 2a(x− a) + a2.

Now we can plug in P1 = (− 1
2 ,−2) to this line to solve for a:

−2 = 2a(−1

2
− a) + a2,

or
−2 = −a− a2,

or
a2 + a− 2 = (a+ 2)(a− 1) = 0.

We expect to find two solutions, since we already know that the tangent line at P0 = (−2, 4) does pass through
P1. This corresponds to a = −2 in the above quadratic equation. The new solution is a = 1, which gives us
the point

P2 = (a, a2) = (1, 1).

Once again, we can perform a consistency check by computing the point γ( 1
2 ) with these control points, which

should be a point on the curve y = x2.

P0 = (−2, 4)
P 1
0 = (− 5

4 , 1)
P1 = (− 1

2 ,−2) P 2
0 = (− 1

2 ,
1
4 ) = γ( 1

2 )
P 1
1 = ( 1

4 ,−
1
2 )

P2 = (1, 1)

and indeed γ( 1
2 ) = (− 1

2 ,
1
4 ) is a point on y = x2.

• What happens if we have collinear control points in the tangent construction? Suppose P0 = (0, 0), P1 = (1, 0)
and P2 = (3, 0).

In this case, since all the control points are on the x-axis, we have

L0(x, y) = y = 0, L2(x, y) = y = 0, and L(x, y) = y = 0,
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which gives:
fc(x, y) = L0(x, y)L2(x, y) + cL(x, y)2 = y2 + cy2 = 0.

Now, since any other point on the Bezier curve with these control points can be obtained by nested linear
interpolation, it must also be on the same line. So any constant c will do, and we have simply:

fc(x, y) = y2 = 0.

This is just a “double line”, which is technically a quadratic equation, whose graph is however simply a line.

The Bezier curve with these control points:

γ(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2

= (1− t)2(0, 0) + 2(1− t)t(1, 0) + t2(3, 0)

= (2(1− t)t+ 3t2, 0)

= (2t+ t2, 0)

gives a parametrization which lies on the line y = 0, however it does not travel the line in a typical way.
Instead, it proceeds in one direction, stops and turns around, and then proceeds in the opposite direction. To
see where it stops, we can consider the derivative:

γ′(t) = 2 [(1− t)v1 + tv2] = 2 [(1− t)(1, 0) + t(2, 0)] = 2(1 + t, 0).

A particle moving with this velocity vector will stop when the vector is zero, and we see that γ′(t) = (0, 0)
exactly for t = −1. At t = 0 it is at P0 = (0, 0), with velocity vector (2, 0), and at t = 1 it is at P2 = (2, 0),
with velocity vector (4, 0).

So we see that the particle must come from +∞ on the x-axis, as t comes from −∞, then pass through P2

and P0 for some negative values of t, then when t = −1 it reaches the point (−1, 0), turns around, and heads
back towards +∞ on the x-axis. We can think of this trajectory as a “squashed parabola”, which has been
flattened so that its vertex is now at (−1, 0).

• Find the intersection points of two Bezier curves. Let γ(t) have control points P0 = (0, 2), P1 = (0, 0), and
P2 = (2, 0). We found the implicit equation to be:

x2 + y2 − 2xy − 4x− 4y + 4 = 0.

Now let α(t) have control points Q0 = (0, 2), Q1 = (−1, 1), and Q2 = (2, 0). Then clearly γ(t) and α(t) have
at least the two points P0 = Q0 and P2 = Q2 in common. From the graphs we can see that they also must
have another point in common, with coordinates between 0 and 1.

First, we need the implicit form for α(t). We find the linear equations:

L0(x, y) = x− y + 2 = 0, L2(x, y) = x+ 3y − 2 = 0, and L(x, y) = x+ y − 2 = 0,

which gives:

fc(x, y) = L0(x, y)L2(x, y) + cL(x, y)2 = (x− y + 2)(x+ 3y − 2) + c(x+ y − 2)2 = 0.

Next, we compute γ( 1
2 ) with the Bezier point array:

P0 = (0, 2)
P 1
0 = (− 1

2 ,
3
2 )

P1 = (−1, 1) P 2
0 = (0, 1) = α( 1

2 )
P 1
1 = ( 1

2 ,
1
2 )

P2 = (2, 0)
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Finally, we plug in (0, 1) to fc(x, y) = 0 and solve for c:

fc (0, 1) = (0− 1 + 2)(0 + 3− 2) + c (0 + 1− 2)
2

= 1 + c

= 0,

which means that c = −1, and the equation for fc = f is:

f(x, y) = (x− y + 2)(x+ 3y − 2)− (x+ y − 2)2 = 0.

This is equivalent to:
4x− 4y2 + 12y − 8 = 0,

or

x = y2 − 3y + 2 = (y − 3

2
)2 − 1

4
.

Now to find the intersection points, we substitute x = y2 − 3y + 2 into the equation of the first parabola

x2 + y2 − 2xy − 4x− 4y + 4 = 0

to get:
(y2 − 3y + 2)2 + y2 − 2(y2 − 3y + 2)y − 4(y2 − 3y + 2)− 4y + 4 = 0

and simplifying, we have:
y4 − 8y3 + 16y2 − 8y = 0.

Since we know that these two parabolas do intersect at P0 = (0, 2) and P2 = (2, 0), we know that the y-
coordinates of these points must be solutions of this fourth degree polynomial. Indeed, we can factor out
y(y − 2) to get:

y(y − 2)(y2 − 6y + 4) = 0

which also has the solutions:
y = 3±

√
5,

which gives the approximate points of intersection:

(13.7, 5.2) and (0.29, 0.76).

Resultants

To intersect to general quadratic equations, we can use the resultant. Suppose that

f(x, y) = a0(x) + a1(x)y + a2(x)y2,

and
g(x, y) = b0(x) + b1(x)y + b2(x)y2.

Then the resultant is defined as a determinant:

R(x) =

∣∣∣∣∣∣∣
a0(x) 0 b0(x) 0
a1(x) a0(x) b1(x) b0(x)
a2(x) a1(x) b2(x) b1(x)

0 a2(x) 0 b2(x)

∣∣∣∣∣∣∣ .
The x-coordinates of the intersection points of f(x, y) = 0 and g(x, y) = 0 are zeros of the resultant R(x). Similarly,
we can define a resultant R(y), whose zeros are the y-coordinates of the intersection points.
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