Lecture 19

Main Points:

e Further examples of quadratic Bezier Curves

More Examples:

e Assume that a Bezier curve has implicit form y = 2%, and we know that Py = (—2,4) and P, = (—%,-2). We
will find the third control point Ps.

Note: Once we specify Py = (—2,4), we cannot choose P; arbitrarily since it must lie on the tangent line to
y = 2% at the point (—2,4). Since the derivative y’ = 2x has value —4 at x = —2, we see that this tangent line
has equation y = —4x — 4 and indeed (—3, —2) is on this line.

Next, we need to find a point P, on y = x?, which must have the property that the tangent line at P, passes
through P;. Suppose that the point P; is written:

P, = (aab) = ((l, (12).
Then the tangent line at P, = (a,a?) has slope 2a and can be written:
y = 2a(z — a) + a*.

Now we can plug in P; = (-3, —2) to this line to solve for a:

2

or

or
a*>+a—-2=(a+2)(a—1)=0.

We expect to find two solutions, since we already know that the tangent line at Py = (—2,4) does pass through
P;. This corresponds to a = —2 in the above quadratic equation. The new solution is @ = 1, which gives us
the point

P, = (a,a?) = (1,1).

Once again, we can perform a consistency check by computing the point ’y(%) with these control points, which
should be a point on the curve y = z2.

Py =(-2,4)
Bl = (-3
Pi=(-4-2) RE = (=35 =10
P = (b
Py =(1,1)
and indeed 7(3) = (=3, 1) is a point on y = 2.

e What happens if we have collinear control points in the tangent construction? Suppose Py = (0,0), P, = (1,0)
and P, = (3,0).

In this case, since all the control points are on the x-axis, we have

LO(I7y):y:03 Lg(x,y):y:(), and L(z,y):y:(),



which gives:
fe(,y) = Lo(z,y)La(x,y) + cL(z,y)* = y* + cy® = 0.

Now, since any other point on the Bezier curve with these control points can be obtained by nested linear
interpolation, it must also be on the same line. So any constant ¢ will do, and we have simply:

fe(z,y) = y* = 0.
This is just a “double line”, which is technically a quadratic equation, whose graph is however simply a line.
The Bezier curve with these control points:
vt) = (1—1)*Py+2(1 —t)tP +t°P,
= (1—1)%(0,0) +2(1 — t)t(1,0) + t*(3,0)
(2(1 — t)t + 3t%,0)
(2t +t2,0)

gives a parametrization which lies on the line y = 0, however it does not travel the line in a typical way.
Instead, it proceeds in one direction, stops and turns around, and then proceeds in the opposite direction. To
see where it stops, we can consider the derivative:

V() = 2[(1 — t)vi + tva] = 2[(1 — £)(1,0) + £(2,0)] = 2(1 +£,0).

A particle moving with this velocity vector will stop when the vector is zero, and we see that v'(¢) = (0,0)
exactly for t = —1. At ¢t =0 it is at Py = (0,0), with velocity vector (2,0), and at t = 1 it is at P, = (2,0),
with velocity vector (4,0).

So we see that the particle must come from +oc on the z-axis, as t comes from —oo, then pass through P
and P, for some negative values of ¢, then when ¢t = —1 it reaches the point (—1,0), turns around, and heads
back towards 4+co on the z-axis. We can think of this trajectory as a “squashed parabola”, which has been
flattened so that its vertex is now at (—1,0).

Find the intersection points of two Bezier curves. Let (t) have control points Py = (0,2), P, = (0,0), and
P, =(2,0). We found the implicit equation to be:

2?4 9% — 20y —dr — 4y + 4 =0.

Now let a(t) have control points Qo = (0,2), @1 = (—1,1), and Q2 = (2,0). Then clearly v(¢) and a(t) have
at least the two points Py = Qo and P, = Q2 in common. From the graphs we can see that they also must
have another point in common, with coordinates between 0 and 1.

First, we need the implicit form for a(t). We find the linear equations:
Lo(z,y) =z —y+2=0, Lo(z,y) =2+3y—2=0, and L(z,y)=xz4+y—2=0,
which gives:

fe(@,y) = Lo(x,y)La(z,y) + cL(z,y)* = (x —y + 2)(x + 3y —2) + c(z +y — 2)* = 0.

Next, we compute 7(3) with the Bezier point array:

Py = (072)
]DO1 = (_%7%)

P =(-1,1) F§=(0,1) = a(3)
Pll = (%a %)

Py = (230)



Finally, we plug in (0,1) to f.(z,y) = 0 and solve for ¢:

f(0,1) = (0—14+2)(0+3-2)+c(0+1-2)°
= 1l+c
which means that ¢ = —1, and the equation for f. = f is:

flay)=(z—y+2)(@+3y—2) - (r+y—-2)*=0.
This is equivalent to:
4o — 4% +12y — 8 =0,
or

3
m=y2—3y+2=(y—§)2—1.

Now to find the intersection points, we substitute z = y? — 3y + 2 into the equation of the first parabola
2?4+ y? —2ay —dr—4dy+4=0

to get:
(> =3y +2)2+y* —2(4* =3y +2y—4(y* -3y +2) —4dy+4=0

and simplifying, we have:
y* — 8% +16y> — 8y = 0.

Since we know that these two parabolas do intersect at Py = (0,2) and P> = (2,0), we know that the y-
coordinates of these points must be solutions of this fourth degree polynomial. Indeed, we can factor out

y(y — 2) to get:
y(y —2)(y* — 6y +4) =0

which also has the solutions:
y=3+5,

which gives the approximate points of intersection:

(13.7,5.2) and  (0.29,0.76).

Resultants

To intersect to general quadratic equations, we can use the resultant. Suppose that

[z, y) = ao(z) + ar(x)y + az(z)y?,

and
9(z,y) = bo(x) + b (z)y + ba(2)y’.

Then the resultant is defined as a determinant:

aogxg (() ) bogxg (() )
_|ai(x apglT bl xz bO xz
R(z) = as(xz) ai(z) ba(z) bi(z)

0 as(x) 0 D)

The z-coordinates of the intersection points of f(z,y) = 0 and g(x,y) = 0 are zeros of the resultant R(z). Similarly,
we can define a resultant R(y), whose zeros are the y-coordinates of the intersection points.



