
Lecture 2

Main Points:

• Finish Overview of Project Part II - Bezier Curves, BB-form, Midpoint Subdivision

• Vector Spaces of Polynomials: Shifted, Vandermonde, and Top-down bases.

• Bernstein Polynomials and Bernstein basis.

Midpoint Subdivision (Refer to Project Part II subpart 3)

The third sub-part of Project II, Midpoint Subdivision, differs from the other two in an important way: the points
which are generated are not necessarily on the curve. However, they are always either on the curve or on a tangent
line to the curve. Since the number of points increases, this guarantees that the line segments converge to the actual
curve. Another way in which it differs is that it produces successive approximations to the curve recursively, rather
than producing a list of points to be connected.

Polynomial vector spaces

Pd is the vector space of polynomials of degree at most d. (In this course we will typically use the variable t for
polynomials.)

Examples:

• The vector space P3 consists of polynomials of degree at most 3 such as 2 − 4t + 8t2 − 6t3, 4t − t3, 1 + 6t, or
even constant polynomials (degree zero) such as 3, −2, or 0, etc.

Addition and scalar multiplication in Pd are done in the usual way for polynomials, which is the usual addition of
polynomials and multiplication by real numbers that is familiar from algebra.

The standard basis of Pd is: {1, t, t2, . . . , td}. The dimension of Pd is d + 1.

The coordinate vector of a polynomial with respect to the standard basis is a column vector of coefficients. The
default order for the coefficients is with increasing degree corresponding to order in the column vector from top to
bottom.

Examples:

• The polynomial 2− 3t + 4t2 in P2 has coordinate vector with respect to the standard basis given by:

 2
−3
4

.

Shifted bases are formed with one constant c as: {1, t− c, (t− c)2, . . . , (t− c)d}.

Examples:
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• A shifted basis of P2 is: {1, t− 3, (t− 3)2}. The polynomial 3− 2(t− 3) + 2(t− 3)2 has coorinate vector with

respect to this basis:

 3
−2
2

. Since 3− 2(t− 3) + 2(t− 3)2 is equal (after multiplying out) to: 27− 14t + 2t2,

we also see that this polynomial has coordinate vector with respect to the standard basis:

 27
−14

2

. It is

important to understand that these two coordinate vectors represent exactly the same polynomial, but the
coordinates are different because they represent the coefficients with respect to different bases.

Vandermonde bases are formed with d + 1 constants t0, t1, . . . , td as: {(t− t0)d, (t− t1)d, . . . , (t− td)d}.

Examples:

• {(t− 1)2, (t− 3)2, (t− 9)2} is a Vandermond basis of P2, with t0 = 1, t1 = 3, t2 = 9.

• {t3, (t + 1)3, (t− 4)3, (t− 5)3} is a Vandermond basis of P3, with t0 = 0, t1 = −1, t2 = 4, and t3 = 5.

Top-down bases (intuitive description)

A top-down basis of Pd is a set of d + 1 polynomials which can be either i) Vandermonde, or ii) Shifted, or iii)
in between. The third case can be thought of as follows: Take several shifted bases and list them in columns from
highest degree on top, to lowest degree on bottom. From these columns, choose any number of polynomials from the
top downward, without skipping any, so that the total number of polynomials adds up to d + 1. This is a top-down
basis. If you only use the top elements of each column, you get a Vandermonde basis. If you go all the way down
one column, you get a shifted basis. The in between cases give you pieces of shifted bases collected together, with
the requirement that the pieces start with highest degree and work down (top-down).

Examples:

• {(t− 1)2, t− 2, (t− 3)2} is a basis which is not a top-down basis of P2.

• Exactly 10 top-down bases can be formed from following the grid of polynomials:

(t− 1)2 (t− 2)2 (t− 3)2

t− 1 t− 2 t− 3
1 1 1

One of them is also Vandermonde: {(t− 1)2, (t− 2)2, (t− 3)2}. Each column makes up one shifted basis. The
other cases are of the type: {(t − 1)2, t − 1, (t − 2)2}, which take two from the top of one stack and one from
another. (Check that there are ten in all.)

Top-down bases (detailed technical description)

The top-down bases are the sets obtained from a grid of polynomials in the following way: Choose distinct
real numbers t0 < t1 < · · · < tr. The grid G(t0, t1, . . . , tr) consists of rows (t− t0)d−i, (t− t1)d−i, . . . , (t− tr)d−i for
i = 0, . . . , d. (Another way to define this grid is as a (d+1)×(r+1) matrix with (i, j) entry given as: (t−tj−1)d−i+1).)
A top-down set S is a set of at most d + 1 polynomials taken from this grid by choosing from the top of some
subset of the r + 1 columns and working down. Any number of polynomials can be taken from each column, up to
a maximum of d + 1. Thus, if (t− tj)

d−i is a member of S, then (t− tj)
d, (t− tj)

d−1, . . . , (t− tj)
d−i+1 must also be

members of S. If a set of d + 1 polynomials is chosen in this way, it is called a top-down basis of Pd. We can also
describe these sets without the visual aid of the grid as follows: Choose distinct real numbers t0 < t1 < · · · < tr, and
indices m0,m1, . . . ,mr with 0 ≤ mi ≤ d + 1, and the sum

∑r
i=0 mi = d + 1. Then the top-down set associated to

this data is the union of the sets

{(t− ti)
d, (t− ti)

d−1, . . . , (t− ti)
d−mi+1}, i = 0, . . . , r
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where if mi = 0 then the set is empty.

Change of basis

To change between one basis and another, we need a change of basis matrix. The simplest change of basis matrix is
one which can be used to convert from some basis to the standard basis. This is obtained simply by writing down
the coordinate vectors of the basis polynomials and putting them into a matrix. The process can also be reversed
by using the inverse matrix.

Examples:

• Find the change of basis matrix which converts from the Vandermonde basis {(t− 1)2, (t− 2)2, (t− 3)2} to the
standard basis of P2. Since (t− 1)2 = 1− 2t + t2, it has coordinate vector with respect to the standard basis: 1
−2
1

. Similarly, (t − 2)2 and (t − 3)2 have coordinate vectors:

 4
−4
1

, and

 9
−6
1

. The change of basis

matrix is thus:

 1 4 9
−2 −4 −6
1 1 1

. This can be used to convert the polynomial 3(t− 1)2− 2(t− 2)2 + 4(t− 3)2

to the standard basis as follows: Since the coordinate vector of this polynomial is

 3
−2
4

 we multiply to get:

 1 4 9
−2 −4 −6
1 1 1

 3
−2
4

 =

 31
−22

5


which says that 3(t− 1)2− 2(t− 2)2 + 4(t− 3)2 = 31− 22t+ 5t2. But this is no surprise, since we can also work
this out by simply multiplying these binomials and adding terms. What is a little more subtle, is the fact that
we can also reverse this process with an inverse matrix.

• In the previous example we apply the inverse matrix to the matrix equation and obtain: 3
−2
4

 =

 1
2

5
4 3

−1 −2 −3
1
2

3
4 1

 31
−22

5


This gives the same information about the polynomials in reverse. It can also be used to find the coefficients
for any polynomial in standard basis, converted to the Vandermonde basis. For example, suppose we want to
convert the polynomial 2 − 3t + t2 into the Vandermonde basis from the previous example. This means we
want to find coefficients so that:

2− 3t + t2 = a0(t− 1)2 + a1(t− 2)2 + a2(t− 3)2.

So we simply apply the inverse matrix to the stanard basis coordinate vector, to obtain: 1
2

5
4 3

−1 −2 −3
1
2

3
4 1

 2
−3
1

 =

 1
4
1
− 1

4


This is saying that 2− 3t + t2 = 1

4 (t− 1)2 + (t− 2)2 − 1
4 (t− 3)2 which can also be checked by multiplying out

the right side.

Bernstein polynomials and Bernstein basis

The Bernstein polynomials of degree d are labelled as:

Bd
0 (t), Bd

1 (t), Bd
2 (t), . . . , Bd

d(t).
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Each one is defined as:

Bd
i (t) =

(
d

i

)
(1− t)d−iti,

where the binomial coefficient
(
d
i

)
is defined as: (

d

i

)
=

d!

(d− i)!i!
.

The binomial coefficients are better computed with Pascal’s Identity:(
d

i

)
=

(
d− 1

i− 1

)
+

(
d− 1

i

)
and the fact that

(
d
0

)
=
(
d
d

)
= 1. This identity is the basis for Pascal’s Triangle, in which row d consists of(

d
0

) (
d
1

)
. . .
(
d
d

)
.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

etc.

The binomial coefficients also count the number of subsets of size i in a set of size d.

Examples:

• The number of subsets of size two in the set {1, 2, 3, 4} is six, and sets are clearly {1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}. This is the binomial coefficient

(
4
2

)
which equals 6. It is also the middle element of the row

1 4 6 4 1

in Pascal’s Triangle, and Pascal’s Identity is:(
4

2

)
=

(
3

1

)
+

(
3

2

)
= 3 + 3 = 6.

Bernstein basis

The set of Bernstein polynomials {Bd
0 (t), Bd

1 (t), Bd
2 (t), . . . , Bd

d(t)} is a basis of Pd, called the Bernstein basis of Pd.

Examples:

• The Bernstein basis of P1 is {B1
0(t), B1

1(t)} = {1− t, t}.

• The Bernstein basis of P2 is {B2
0(t), B2

1(t), B2
2(t)} = {(1− t)2, 2(1− t)t, t2}.

• The Bernstein basis of P3 is {B3
0(t), B3

1(t), B3
2(t), B3

3(t)} = {(1− t)3, 3(1− t)2t, 3(1− t)t2, t3}.

More Change of Basis

Find the change of basis matrix from B(2) = {B2
0(t), B2

1(t), B2
2(t)} to the top-down basis B1 = {(t−1)2, t−1, (t−2)2}.
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The simplest method is to first change from B(2) to standard basis S2 and then from S2 to B1. The change of basis
from B(2) to S2 is obtained as above, by first expanding the polynomials:

B2
0(t) = (1− t)2 = 1− 2t + t2, with coordinate vector

 1
−2
1

,

B2
1(t) = 2(1− t)t = 2t− 2t2, with coordinate vector

 0
2
−2

, and

B2
2(t) = t2, with coordinate vector

 0
0
1

.

Then the change of basis matrix which converts from B(2) to S2 is:

A1 =

 1 0 0
−2 2 0
1 −2 1

 .

Next we need the change of basis matrix from S2 to B1. Again, we first convert the other way, from B1 to S2:

(t− 1)2 = 1− 2t + t2, has coordinate vector

 1
−2
1

,

t− 1, has coordinate vector

−1
1
0

, and

(t− 2)2 = 4− 4t + t2, has coordinate vector

 4
−4
1

.

So the change of basis matrix which converts from B1 to S2 is:

A2 =

 1 −1 4
−2 1 −4
1 0 1

 .

We need the inverse, which changes from S2 to B1:

A−12 =

−1 −1 0
2 3 4
1 1 1

 .

The final matrix which changes from B(2) to B1 is then the product:

A−12 A1 =

−1 −1 0
2 3 4
1 1 1

 1 0 0
−2 2 0
1 −2 1

 =

 1 −2 0
0 −2 4
0 0 1

 .

We can test this on a particular polynomial, say 2(1− t)2 + 3(2(1− t)t) + 4t2. This has coordinate vector

 2
3
4

 with

respect to the basis B(2). Using the matrix above, we can convert it to B1:
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 1 −2 0
0 −2 4
0 0 1

 2
3
4

 =

−4
10
4

 ,

which is saying that 2(1− t)2 + 3(2(1− t)t) + 4t2 = −4(t− 1)2 + 10(t− 1) + 4(t− 2)2.

This is confirmed by multiplying both polynomials out to the standard basis:

2(1− t)2 + 3(2(1− t)t) + 4t2 = 2t + 2,

−4(t− 1)2 + 10(t− 1) + 4(t− 2)2 = 2t + 2.

In the exercises, we construct polynomials that pass through certain points, or have required derivatives at certain
points. This is a special case of polynomial interpolation. Here we do a few examples with the method of linear
systems.

Examples:

• Find the polynomial p(t) = a0 + a1t+ a2t
2 which satisfies: p(0) = 2, p(1) = −3, and p(2) = 0. To solve for the

coefficients, we set up three linear equations:

a0 + a1 · 0 + a2 · 02 = 2
a0 + a1 · 1 + a2 · 12 = −3
a0 + a1 · 2 + a2 · 22 = 0

This is equivalent to the augmented matrix:

 1 0 0 | 2
1 1 1 | −3
1 2 4 | 0


The solution can be obainted by Gaussian Elimination:

 1 0 0 | 2
1 1 1 | −3
1 2 4 | 0

 −→
 1 0 0 | 2

0 1 1 | −5
0 2 4 | −2

 −→
 1 0 0 | 2

0 1 1 | −5
0 0 2 | 8


−→

 1 0 0 | 2
0 1 1 | −5
0 0 1 | 4

 −→
 1 0 0 | 2

0 1 0 | −9
0 0 1 | 4


which means that a0 = 2, a1 = −9, and a2 = 4, and the polynomial is p(t) = 2 − 9t + 4t2. Checking, we see
that indeed p(0) = 2, p(1) = −3, and p(2) = 0.

• Find the polynomial p(t) = a0 + a1t + a2t
2 which satisfies: p(0) = 2, p′(0) = 1, and p(1) = 3. To solve for the

coefficients, we set up three linear equations, this time using both p(t) and p′(t) = a1 + 2a2t:

a0 + a1 · 0 + a2 · 02 = 2
a1 + 2 · a2 · 0 = 1

a0 + a1 · 1 + a2 · 12 = 3

This is equivalent to the augmented matrix:
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 1 0 0 | 2
0 1 0 | 1
1 1 1 | 3


The solution can be obainted by Gaussian Elimination:

 1 0 0 | 2
0 1 0 | 1
1 1 1 | 3

 −→
 1 0 0 | 2

0 1 0 | 1
0 1 1 | 1

 −→
 1 0 0 | 2

0 1 0 | 1
0 0 1 | 0


which means that a0 = 2, a1 = 1, and a2 = 0, and the polynomial is p(t) = 2 + t + 0 · t2 = 2 + t. Checking,
we see that indeed p(0) = 2, p′(0) = 1, and p(1) = 3. Note: this could have been predicted by the conditions,
since heading out from (0, 2) with a slope of 1 will take you directly to (1, 3). We will see later, in the section
on interpolation, that the solution to this type of problem is unique within the vector space Pd (in this case
P2) so in this case we know that there is no parabola satisfying the conditions.
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