Lecture 21

Main Points:

- General discussion of *B*-splines and *B*-spline curves
- Order of continuity of *B*-splines based on knot sequence

Definition of B-splines of degree d for a knot sequence t

Given a knot sequence **t** with $t_0 \le t_1 \le \ldots \le t_N$, we define for any degree $d \ge 0$, and for $0 \le i \le N - d - 1$:

$$\mathcal{B}_{i}^{d}(t) = (-1)^{d+1} (t_{i+d+1} - t_{i}) [t_{i}, t_{i+1}, \dots, t_{i+d+1}] (t-x)_{+}^{d}$$

Some points regarding *B*-splines:

- The set $\mathcal{B}_d(\mathbf{t})$ or $\mathcal{B}_{d,\mathbf{t}}$ is the set of *B*-splines associated to the knot sequence \mathbf{t} : $\mathcal{B}_d(\mathbf{t}) = \{\mathcal{B}_0^d(t), \ldots, \mathcal{B}_{N-d-1}^d(t)\}$
- The interval of support of a nonzero B-spline $\mathcal{B}_i^d(t)$ is the interval where it is nonzero: (t_i, t_{i+d+1}) .
- Note: From the definition of B-spline, if $t_i = t_{i+d+1}$ (which means that all t_j with i < j < i + d + 1 are also equal to t_i) then the B-spline $\mathcal{B}_i^d(t)$ is just zero for all t, since it starts with the factor $(t_{i+d+1} t_i) = 0$.
- Positivity of nonzero *B*-splines: $\mathcal{B}_i^d(t) > 0$ for $t_i < t < t_{i+d+1}$.

Orders of continuity for a B-spline

The possible orders of continuity at a given breakpoint c in a spline space with order of continuity r are: $r, r+1, \ldots, d$ for r = d - m, where m is the multiplicity of the knots equal to c. Given the exact descriptions of bases, and the notes above, it is possible to say exactly which functions in a basis have which exact orders of continuity. We say that a function f has exact order of continuity r at c if $f^{(j)}(c)$ exists for $j = 0, \ldots r$, but $f^{(r+1)}(c)$ does not exist.

The exact order of continuity of a *B*-spline $\mathcal{B}_i^d(t)$ at each of the knot values t_i, \ldots, t_{i+d+1} is given by $d - m(t_i)$ where $m(t_i)$ is the multiplicity of the value t_i in the subsequence t_i, \ldots, t_{i+d+1} . (Note: This is NOT necessarily the same as the multiplicity in the whole knot sequence \mathbf{t} .)

Examples:

- A degree d = 0 B-spline has two knot values, say t_i and t_{i+1} . As we saw before, if $t_i < t_{i+1}$, then $\mathcal{B}_i^0(t) = 1$, for $t_i \leq t < t_{i+1}$ and is zero otherwise. Since each of t_i and t_{i+1} has multiplicity one, this B-spline must have order of continuity d m = 0 1 = -1 at each value, which means a *discontinuity*.
- A degree d = 1 *B*-spline has three knot values, say t_i , t_{i+1} , and t_{i+2} . We can guess the shape of such a *B*-spline depending on the multiplicities of the knot values. For example, if the multiplicities are all one, so that $t_i < t_{i+1} < t_{i+2}$, then the $\mathcal{B}_i^1(t)$, has order of continuity d = m = 1 1 = 0 at each knot values, which means that it is continuous there. Since it is also positive (by the property above) and piecewise linear for $t_i < t < t_{i+2}$, and equal to zero at t_i and t_{i+2} , we see that the shape of the function is a hat shape.
- Now suppose d = 1 and $t_i = t_{i+1} < t_{i+2}$. Then $\mathcal{B}_i^1(t)$ has order of continuity d m = 1 2 = -1 at $t = t_i$ and order of continuity 0 at $t = t_{i+2}$.
- A degree d = 2 *B*-spline has four knot values t_i , t_{i+1} , t_{i+2} , and t_{i+3} . We can list some examples with orders of continuity and multiplicities:

degree	knot values	multiplicities	orders of continuity
2	0,1,2,3	$1,\!1,\!1,\!1$	1,1,1,1
2	0,0,1,2	2,1,1	0,1,1
2	0,1,1,2	1,2,1	1,0,1
2	0,1,2,2	$1,\!1,\!2$	1,1,0
2	0,2,2,2	1,3	1,-1

• With the knot sequence $\mathbf{t} = \{0, 1, 2, 2, 3, 3, 3, 4, 5, 6\}$, the spline $\mathcal{B}_1^2(t)$ is based on the subsequence $\{1, 2, 2, 3\}$. The order of continuity at 3 will be 1 since the multiplicity of 3 in this subsequence is 1 and r = d - m = 2 - 1 = 1.

Here is a table of the *B*-splines associated to this knot sequence, with their subsequence, multiplicities and orders of continuity. Note: the index i of each *B*-spline determines the starting knot value t_i .

index i	<i>B</i> -spline	knot values	multiplicities	orders of continuity
0	$\mathcal{B}_0^2(t)$	0,1,2,2	1,1,2	1,1,0
1	$\mathcal{B}_1^2(t)$	1,2,2,3	1,2,1	1,0,1
2	$\mathcal{B}_2^2(t)$	2,2,3,3	2,2	0,0
3	$\mathcal{B}_3^2(t)$	2,3,3,3	1,3	1,-1
4	$\mathcal{B}_4^2(t)$	$3,\!3,\!3,\!4$	3,1	-1,1
5	$\mathcal{B}_5^2(t)$	$3,\!3,\!4,\!5$	2,1,1	0,1,1
6	$\mathcal{B}_6^2(t)$	$3,\!4,\!5,\!6$	$1,\!1,\!1,\!1$	1,1,1,1

The graphs of each of the above *B*-splines can be drawn, up to a scaling factor, based on the orders of continuity at each of the knot values.

Curry-Schoenberg Theorem for *B*-spline bases.

The Curry-Schoeberg Theorem states that $P_{d,\mathbf{r}}^k[u_0,\ldots,u_k]$, with $\mathbf{r} = (r_1,\ldots,r_{k-1})$ and $\mathbf{m} = (m_1,\ldots,m_{k-1})$, has a basis consisting of *B*-splines associated to a knot sequence $\mathbf{t} = \{t_0,\ldots,t_N\}$ given by $t_0 \leq t_1 \leq \cdots \leq t_d \leq u_0$, and $u_k \leq t_{N-d} \leq \cdots \leq t_N$. The middle part of the knot sequence t_{d+1},\ldots,t_{N-d-1} corresponds exactly to the sequence of breakpoints $u_1,\ldots,u_1,u_2,\ldots,u_2,\ldots,u_{k-1}$, where the multiplicity of each u_i is $m_i = d - r_i$.

B-spline curves

A *B*-spline curve can be written in the form:

$$\gamma(t) = \sum_{i=0}^{N-d-1} \mathcal{B}_i^d(t) P_i,$$

where the points P_i are called the control points. This form is analogous to the BB-form form Bezier curves, where the functions of t are the Bernstein polynomials, and the index runs from i = 0 to d since P_d has dimension d + 1. In the case of the B-splines, the dimension of the vector space of splines has dimension N-d. By the Curry-Schoenberg Theorem, this number aligns with the dimension of the vector space $P_{d,\mathbf{r}}^k[u_0,\ldots,u_k]$, for some orders of continuity (r_1,\ldots,r_{k-1}) , which is $d+1+\sum_{i=1}^{k-1}d-r_i$. So we have:

$$dim\left(P_{d,\mathbf{r}}^{k}[u_{0},\ldots,u_{k}]\right) = d + 1 + \sum_{i=1}^{k-1} d - r_{i} = N - d.$$

Since there are many different bases for this vector space of splines, the curve $\gamma(t)$ can be written in different forms without changing the function. This particular form also shares the property that control points affect the shape of the curve, just as with the *BB*-form, and that the curve can be evaluated by nested linear interpolation. The NLI algorithm for evaluating *B*-spline curves is called the DeBoor Algorithm.