
Lecture 23

Main Points:

• Writing B-splines in terms of shifted power functions

• Orders of continuity for sums of shifted power functions

• Orders of continuity for B-splines

Writing a B-spline in terms of shifted power functions

To write a B-spline as a sum of shifted power functions, we use the definition of the divided difference. This says
that, for instance, the divided difference

[ti, . . . , ti+d+1]g

is equal to the coefficient of td in the interpolating polynomial

p(t) = a0 + a1t + a2t
2 + . . . + adt

d,

which matches the function g at the data values ti, . . . , ti+d+1. This definition allows us to compute this divided
difference by solving for ad by any method. One method was to use the recursion formula for divided differences.
Another method is Cramer’s Rule.

Recall Cramer’s Rule for a linear system with variables x1, x2, and x3, and augmented matrix: a1,1 a1,2 a1,3 | b1
a2,1 a2,2 a2,3 | b2
a3,1 a3,2 a3,3 | b3


This system can also be written:

Ax = b.

If det(A) 6= 0 then the solution can be given by Cramer’s Rule as:

x1 =
1

det(A)

∣∣∣∣∣∣
b1 a1,2 a1,3
b2 a2,2 a2,3
b3 a3,2 a3,3

∣∣∣∣∣∣ , x2 =
1

det(A)

∣∣∣∣∣∣
a1,1 b1 a1,3
a2,1 b2 a2,3
a3,1 b3 a3,3

∣∣∣∣∣∣ , x3 =
1

det(A)

∣∣∣∣∣∣
a1,1 a1,2 b1
a2,1 a2,2 b2
a3,1 a3,2 b3

∣∣∣∣∣∣ .
We can apply this to solve for the coefficients of an interpolating polynomial

p(x) = a0 + a1x + a2x
2.

We have changed the variable to be x since our application to the definition of B-splines uses x as the dummy
variable. If we suppose that the interpolating polynomial fits the data values x = t0, x = t1, and x = t2 for a
function g(x), with t0 < t− 1 < t2, then the linear system, with variables a0, a1, and a2 becomes: 1 t0 t20 | g(t0)

1 t1 t21 | g(t1)
1 t2 t22 | g(t2)


If we call the determinant of the coefficient matrix

D =

∣∣∣∣∣∣
1 t0 t20
1 t1 t21
1 t2 t22

∣∣∣∣∣∣ = (t1 − t0)(t2 − t0)(t2 − t1),
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then by Cramer’s Rule, the solution for the variables is:

a0 =
1

D

∣∣∣∣∣∣
g(t0) t0 t20
g(t1) t1 t21
g(t2) t2 t22

∣∣∣∣∣∣ , a1 =
1

D

∣∣∣∣∣∣
1 g(t0) t20
1 g(t1) t21
1 g(t2) t22

∣∣∣∣∣∣ , a2 =
1

D

∣∣∣∣∣∣
1 t0 g(t0)
1 t1 g(t1)
1 t1 g(t2)

∣∣∣∣∣∣ .
So we see that the divided difference for degree d = 2 can be written:

[t0, t1, t2]g = a2 =
1

D

∣∣∣∣∣∣
1 t0 g(t0)
1 t1 g(t1)
1 t2 g(t2)

∣∣∣∣∣∣ .
Finally, we can use this to write a degree d = 1 B-spline as a sum of shifted power functions, with g(x) = (t− x)1+:

B10(t) = (−1)2(t2 − t0)[t0, t1, t2](t− x)1+

= (t2 − t0)
1

D

∣∣∣∣∣∣
1 t0 g(t0)
1 t1 g(t1)
1 t2 g(t2)

∣∣∣∣∣∣
=

(t2 − t0)

(t1 − t0)(t2 − t0)(t2 − t1)

[
g(t0)

∣∣∣∣ 1 t1
1 t2

∣∣∣∣− g(t1)

∣∣∣∣ 1 t0
1 t2

∣∣∣∣+ g(t2)

∣∣∣∣ 1 t0
1 t1

∣∣∣∣]
=

1

(t1 − t0)(t2 − t1)
[(t2 − t1)g(t0)− (t2 − t0)g(t1) + (t1 − t0)g(t2)]

=
1

(t1 − t0)
g(t0)− (t2 − t0)

(t1 − t0)(t2 − t1)
g(t1) +

1

(t2 − t1)
g(t2)

=
1

(t1 − t0)
(t− t0)1+ −

(t2 − t0)

(t1 − t0)(t2 − t1)
(t− t1)1+ +

1

(t2 − t1)
(t− t2)1+

We can verify that this last expression has the shape of the hat function, by checking that the value at t = t0 is zero,
and at t = t1 is 1, and at t = t2 is zero. Also, it is clear that for t < t0 the value is zero. To check that the function
is also zero for t > t2, we can use a property of determinants. Recall that a determinant is linear as a function of
any single row or column. Since the functions lose their piecewise nature for t > t2, the determinant becomes:∣∣∣∣∣∣

1 t0 t− t0
1 t1 t− t1
1 t2 t− t2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 t0 t
1 t1 t
1 t2 t

∣∣∣∣∣∣−
∣∣∣∣∣∣
1 t0 t0
1 t1 t1
1 t2 t2

∣∣∣∣∣∣ = t

∣∣∣∣∣∣
1 t0 1
1 t1 1
1 t2 1

∣∣∣∣∣∣− 0 = 0− 0 = 0.

Examples:

• Suppose that t0, t1, and t2 are consecutive integers, such as 1, 2, 3. Then the function B10(t) can be written as:

B10(t) = (t− 1)1+ − 2(t− 2)1+ + (t− 3)1+.

Next, we do the same for a degree 2 B-spline B2i (t), with simple knot values ti = a, ti+1 = b, ti+2 = c, ti+3 = d, and
a < b < c < d.
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As in the previous case, [a, b, c, d]g, with g(x) = (t− x)2+, can be calculated as the coefficient a3 in the interpolating
polynomial p(x) matching g for the data values a, b, c, d, where p(x) = a0 + a1x + a2x

2 + a3x
3. By Cramer’s Rule

with D given by

D =

∣∣∣∣∣∣∣
1 a a2 a3

1 b b2 b3

1 c c2 c3

1 d d2 d3

∣∣∣∣∣∣∣ = (b− a)(c− a)(d− a)(c− b)(d− b)(d− c)

we have:

[a, b, c, d]g(x) = a3 =
1

D

∣∣∣∣∣∣∣
1 a a2 g(a)
1 b b2 g(b)
1 c c2 g(c)
1 d d2 g(d)

∣∣∣∣∣∣∣ .
So if ti = a, ti+1 = b, ti+2 = c, ti+3 = d, then we have

B2i (t) = (−1)2+1(d− a)[a, b, c, d](t− x)2+

=
−(d− a)

D

∣∣∣∣∣∣∣
1 a a2 g(a)
1 b b2 g(b)
1 c c2 g(c)
1 d d2 g(d)

∣∣∣∣∣∣∣

=
−(d− a)

D

−g(a)

∣∣∣∣∣∣
1 b b2

1 c c2

1 d d2

∣∣∣∣∣∣+ g(b)

∣∣∣∣∣∣
1 a a2

1 c c2

1 d d2

∣∣∣∣∣∣− g(c)

∣∣∣∣∣∣
1 a a2

1 b b2

1 d d2

∣∣∣∣∣∣+ g(d)

∣∣∣∣∣∣
1 b b2

1 c c2

1 d d2

∣∣∣∣∣∣


= (d− a)

g(a)

D

∣∣∣∣∣∣
1 b b2

1 c c2

1 d d2

∣∣∣∣∣∣− g(b)

D

∣∣∣∣∣∣
1 a a2

1 c c2

1 d d2

∣∣∣∣∣∣+
g(c)

D

∣∣∣∣∣∣
1 a a2

1 b b2

1 d d2

∣∣∣∣∣∣− g(d)

D

∣∣∣∣∣∣
1 b b2

1 c c2

1 d d2

∣∣∣∣∣∣


= (d− a)

[
g(a)

(b− a)(c− a)(d− a)
− g(b)

(b− a)(c− b)(d− b)
+

g(c)

(c− a)(c− b)(d− c)
− g(d)

(d− a)(d− b)(d− c)

]

=
g(a)

(b− a)(c− a)
− (d− a)g(b)

(b− a)(c− b)(d− b)
+

(d− a)g(c)

(c− a)(c− b)(d− c)
− g(d)

(d− b)(d− c)

=
(t− a)2+

(b− a)(c− a)
−

(d− a)(t− b)2+
(b− a)(c− b)(d− b)

+
(d− a)(t− c)2+

(c− a)(c− b)(d− c)
−

(t− d)2+
(d− b)(d− c)

Examples:

• Let a = 1, b = 2, c = 3, d = 4. Then we have:

B2i (t) = (−1)2+1(4− 1)[1, 2, 3, 4](t− x)2+

=
1

2
(t− 1)2+ −

3

2
(t− 2)2+ +

3

2
(t− 3)2+ −

1

2
(t− 4)2+.
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Now consider the case of non-simple knot sequence. For instance, we could let ti = ti+1 = a, ti+2 = c, and ti+3 = d.
Then we can compute [a, a, c, d]g, for g(x) = (t− x)2+, again using Cramer’s Rule with D given by

D = D(aacd) =

∣∣∣∣∣∣∣
1 a a2 a3

0 1 2a 3a2

1 c c2 c3

1 d d2 d3

∣∣∣∣∣∣∣ = (c− a)2(d− a)2(d− c).

Then we have:

[a, a, c, d]g = a3 =
1

D

∣∣∣∣∣∣∣
1 a a2 g(a)
0 1 2a g′(a)
1 c c2 g(c)
1 d d2 g(d)

∣∣∣∣∣∣∣ =
1

D

∣∣∣∣∣∣∣
1 a a2 (t− a)2+
0 1 2a 2(t− a)1+
1 c c2 (t− c)2+
1 d d2 (t− d)2+

∣∣∣∣∣∣∣ .
Applying this to the B-spline B2i (t), with knot sequence a, a, c, d, we get:

B2i (t) = (−1)2+1(d− a)[a, a, c, d](t− x)2+

= −d− a

D

∣∣∣∣∣∣∣
1 a a2 g(a)
0 1 2a g′(a)
1 c c2 g(c)
1 d d2 g(d)

∣∣∣∣∣∣∣

=
d− a

D

g(a)

∣∣∣∣∣∣
0 1 2a
1 c c2

1 d d2

∣∣∣∣∣∣− g′(a)

∣∣∣∣∣∣
1 a a2

1 c c2

1 d d2

∣∣∣∣∣∣+ g(c)

∣∣∣∣∣∣
1 a a2

0 1 2a
1 d d2

∣∣∣∣∣∣− g(d)

∣∣∣∣∣∣
1 a a2

0 1 2a
1 c c2

∣∣∣∣∣∣
 (1)

=
d− a

D

[
g(a)

[
−(d2 − c2) + 2a(d− c)

]
− g′(a)(c− a)(d− a)(d− c) + g(c)(d− a)2 − g(d)(c− a)2

]

=
d− a

D

[[
−(d2 − c2) + 2a(d− c)

]
(t− a)2+ − (c− a)(d− a)(d− c)2(t− a)1+ + (d− a)2(t− c)2+ − (c− a)2(t− d)2+

]
.

Note: In line (1) above, the determinants (which become the coefficients of the shifted power functions) can sometimes
be recognized as Vandermonde or Confluent Vandermonde. In this line, the second one is Vandermonde, and the last
two are Confluent Vandermonde, but the first one is neither of these types, so it is simply evaluated by the cofactor
expansion formula for determinants.

Examples:

• Let a = 1, c = 2, d = 3. Then we have: D = 4, and we can write the B-spline:

B2i (t) = (−1)2+1(3− 1)[1, 1, 2, 3](t− x)2+

=
1

2

[
−3(t− 1)2+ − 4(t− 1)1+ + 4(t− 2)2+ − (t− 3)2+

]
.

Lowest degree shifted power function in a B-spline has non-zero coefficient
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The lowest degree shifted power function in a B-spline expansion, given by the above determinant formula coming
from Cramer’s Rule, must have non-zero coefficient. The reason for this is simply that the coefficient comes from
a determinant which is either Vandermonde or Confluent Vandermonde. This can be seen by deleting the row
corresponding to the lowest degree shifted power function, say a(t − tj)

k
+, which must be the highest derivative of

some shifted power function (t− tj)
n
+. The remaining rows corresponding to tj have all the lower order derivatives,

and thus the determinant must be Confluent Vandermonde (or regular Vandermonde, which is of course a sub-case).

Orders of continuity for sums of shifted power functions

We have seen that the shifted power function (t− c)k+ is continuous to all orders at all points not equal to c, and can
be seen to have exact order of continuity k − 1 at t = c.

It easy to extend this fact to sums of such functions. In particular, if f(t) is a sum of shifted power functions, then
the order of continuity of f is simply the minimum of all orders of continuity of the summands. If the function
(t− c)k+ is the one that achieves this minimum, then clearly that lowest order of continuity is k− 1 and it occurs for
the value t = c.

Examples:

• The function
f(t) = 7(t− 4)4+ + 3(t− 4)6+ − 5(t− 7)5+

has exact order of continuity 3 which is attained by the summand 7(t− 4)4+ at the value t = 4.

• The function
f(t) = 3(t− 4)3+ + 2(t− 4)4+ − 5(t− 7)5+ + 6(t− 8)4+ − (t− 8)7+

has exact order of continuity 0 which is attained by the summand 2(t− 3)1+ at the value t = 3.

Further Details on orders of continuity for sums of shifted power functions

Recall that a function f(t) has order of continuity r at t = c if f is continuous at t = c and each of the derivative
functions f ′, f ′′, . . . , f (r) are continuous at t = c. If, in addition, the function f (r+1) is not continuous at t = c, then
we say that f has exact order of continuity r at t = c. If f and all of its derivatives are continuous at t = c then we
say f has infinite order of continuity, or simply f is continuous to all orders at t = c.

If we let f(t) = (t− c)k+ then the derivatives of f are:

f ′(t) = k(t− c)k−1+ , f ′′(t) = k(k − 1)(t− c)k−2+ , . . . , f (k−1)(t) = k!(t− c)1+.

Note: The function f(t) = (t − c)1+ is not differentiable at t = c, although it is continuous there. The function
f(t) = (t− c)0+ is neither continuous nor differentiable at t = c.

Let f(t) be defined as a sum:

f(t) = a1(t− u)j1+ + a2(t− u)j2+ + · · ·+ an(t− u)jn+ ,

with all ai 6= 0, and j1 < j2 < · · · < jn. Then the exact order of continuity of f at u is simply j1 − 1. This follows
from the above, since the higher powers are differentiable to higher orders.

Now let f(t) be defined as a sum:

f(t) = a1(t− u1)j1+ + a2(t− u2)j2+ + · · ·+ an(t− un)jn+ ,

with all ai 6= 0, and u1 < u2 < · · · < un. Then the exact order of continuity of f at ui is simply ji − 1. It is then a
fact that f is a member of any vector space of piecewise polynomial functions of the form:

f ∈ Pn+1
d,r [u0, u1, . . . , un, un+1],
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where u0 < u1 and un+1 > un, and d is the maximum of the ji, i = 1, . . . , n, and r is the vector of continuity
conditions:

r = {r1, r2, . . . , rn}, with ri = ji − 1.

Finally, suppose we mix the above two cases by adding higher degree shifted power functions at each ui, and now
define f as:

f(t) = a1,1(t− u1)
j1,1
+ + a1,2(t− u1)

j1,2
+ + · · ·+ a1,n1

(t− u1)
j1,n1
+

+ a2,1(t− u2)
j2,1
+ + a2,2(t− u2)

j2,2
+ + · · ·+ a2,n2

(t− u2)
j2,n2
+

...

+ ak,1(t− uk)
jk,1

+ + ak,2(t− uk)
jk,2

+ + · · ·+ ak,nk
(t− uk)

jk,nk
+

Then if each row is written with increasing powers ji,1 < ji,2 < · · · < ji,ni , we can choose a minimal value jm,1 from
the first column and we have the order of continuity of f is jm,1 − 1.

Proof of orders of continuity of a B-spline

We can prove the claim that the order of continuity of a B-spline Bdi (t) at tj is given by the multiplicity of tj in the
subsequence ti, . . . , ti+d+1.

This fact follows from two previous statements above. First, the coefficient of the lowest degree shifted power function
of type (t− tj)

k
+ in the expansion of B-spline Bdi (t) must be nonzero, for tj in the sequence ti, . . . , ti+d+1. Then, by

the above, the order of continuity of Bdi (t) at tj must be d −m, where m is the multiplicity of tj in the sequence
ti, . . . , ti+d+1.
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