
Lecture 26

Main Points:

• Interpolation with B-splines

• Schoenberg-Whitney Theorem

General Interpolation with a vector space of functions

If we have a vector space V of functions, with dimension n, then we can ask questions about interpolation using
functions in V .

For instance, given data values s1, . . . , sn and some data function g(t), can we find a function f(t) ∈ V such that:

f(si) = g(si), i = 1, . . . , n?

Note: This question is independent of the basis chosen for V . This means that if the interpolation problem has a
solution, then we can write the function f(t) in any basis that we like.

We know that in the case that V = Pd, and thus n = d+1, we have the existence and uniqueness of the interpolating
polynomial, which says that this interpolation problem always has a unique solution.

We will see that this property does not always hold in other vector spaces of functions, in particular for splines.

Interpolation with splines

If we have a vector space of polynomial spline functions such as

V = P kd,r[u0, . . . , uk]

with r = (r1, . . . , rk), and dimension

n = d + 1

k−1∑
i=1

d− ri

then we can ask questions about interpolation using functions in V .

For instance, given data values s1, . . . , sn and some data function g(t), can we find a function f(t) ∈ V such that:

f(si) = g(si), i = 1, . . . , n?

The problem that comes up immediately is that since spline functions are ‘locally polynomial’, we cannot put ‘too
many’ of the data values ‘too close’ together.

More precisely, if we put d+ 2 or more data values in the interval [ui, ui+1], then we cannot expect to find a solution
f(t). This is because on the interval [ui, ui+1] the function f(t) is given by a polynomial p(t) in Pd which must have
degree at most d. But we cannot match such a polynomial to g at more than d + 1 points, except if we have the
coincidence that all the points lie on a polynomial of degree at most d + 1 already.

So, a necessary condition to have a solution f to the above interpolation problem is that: Not more than d + 1 of
the data values lie in any interval of the form [ui, ui+1].

Examples:
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• Let V = P 4
3,1[0, 1, 2, 3, 4] with dimension 10, and choose the data sequence:

s1 = 0.0
s2 = 0.5
s3 = 0.6
s4 = 0.7
s5 = 0.8

s6 = 1.5
s7 = 2.5
s8 = 3.5
s9 = 3.7
s10 = 3.8

Since there are five data values in the interval [0, 1], and the dimension of the space of cubic polynomials is only
four, we know that we cannot choose an arbitrary data function g(t) and expect to find a unique solution to
the interpolation problem in V . In other words, given g(t), we cannot expect to find a solution f(t) in V such
that f(si) = g(si), for i = 1, . . . , 10. Of course, it is always possible that there could exist a solution simply by
chance, or by design, for instance if we chose g to be in V . But in general the interpolation problem will not
have a solution at all.

• Let V = P 4
3,1[0, 1, 2, 3, 4] with dimension 10, and choose the data sequence:

s1 = 0.0
s2 = 0.5
s3 = 0.6
s4 = 0.7
s5 = 1.2

s6 = 1.5
s7 = 2.5
s8 = 3.5
s9 = 3.7
s10 = 3.8

Now we see that there are at most four data values in each of the sub-intervals, so at least there is a chance
that when we choose an arbitrary data function g(t) we might be able to find a solution to the interpolation
problem in V . In other words, given g(t), we might be able to find a solution f(t) in V such that f(si) = g(si),
for i = 1, . . . , 10.

The Schoenberg-Whitney Theorem gives a precise criterion for the existence and uniqueness of a solution to the
interpolation problem for spline vector spaces.

Schoenberg-Whitney Theorem

Let t = {t0, . . . , tN} be a knot sequence such that the B-splines of degree d associated to t are a basis of V =
P kd,r[u0, . . . , uk], with dim(V ) = N − d = n. Now suppose we have a sequence of data values u0 ≤ s0 < s1 < · · · <
sn−1 ≤ uk, and a data function g(t). Then there exists a unique function f(t) ∈ V , satisfying f(si) = g(si), for
i = 0, . . . , n− 1 if and only if:

Bdi (si) > 0, i = 0, . . . , n− 1.

Note: This last condition is equivalent to ti < si < ti+d+1 for the case of continuous B-splines, and ti ≤ si < ti+d+1

for a discontinuous B-spline. So, we can only have si = ti when the knot ti has multiplicity m = d + 1 for the
B-spline Bdi (t).

Examples:

• Let V = P 4
3,1[0, 1, 2, 3, 4] with dimension 10, and choose the data sequence:

s1 = 0.0
s2 = 0.5
s3 = 0.6
s4 = 0.7
s5 = 1.2

s6 = 1.5
s7 = 2.5
s8 = 3.5
s9 = 3.7
s10 = 3.8

Now let t = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4} be a knot sequence such that the B-splines of degree 3 for t are a
basis of V . Then we can check the inequalities in the Schoenberg-Whitney Theorem:
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0 < 0.0 < 1
0 < 0.5 < 1
0 < 0.6 < 2
0 < 0.7 < 2
1 < 1.2 < 3

1 < 1.5 < 3
2 < 2.5 < 4
2 < 3.5 < 4
3 < 3.7 < 4
3 < 3.8 < 4

Thus we can conclude that given any data function g(t), there exists a unique solution f(t) in V such that
f(si) = g(si), for i = 1, . . . , 10.

Proof of the Schoenberg-Whitney Theorem

Suppose that t = {t0, . . . , tN} is a knot sequence such that the B-splines of degree d associated to t are a basis of
V = P kd,r[u0, . . . , uk], with dim(V ) = N − d = n. Also suppose we have a sequence of data values u0 ≤ s0 < s1 <
· · · < sn−1 ≤ uk, and a data function g(t).

We need to show that there exists a unique function f(t) ∈ V , satisfying f(si) = g(si), for i = 0, . . . , n − 1 if and
only if:

Bdi (si) > 0, i = 0, . . . , n− 1.

First we define the collocation matrix A to be the coefficient matrix of the linear system used to solve for f in the
B-spline basis. In particular, we let

f(t) = c0Bd0(t) + · · ·+ cnBdn−1(t),

and then substitute t = si into this equation to get the linear system

Ax = b.

The general entry of A is then:
ai,j = Bdj (si).

Showing that f exists and is unique in V , satisfying f(si) = g(si), for i = 0, . . . , n− 1, is then equivalent to showing
that A is nonsingular.

To show the forward implication of the theorem, we can prove the contrapositive. So suppose that Bdm(sm) = 0 for
some m. This is equivalent to saying that either sm ≤ tm or sm ≥ tm+d+1. In the first case we have Bdk(sm) = 0 for
k > m, and the same holds in the second case for k < m. In the first case we also have Bdj (si) = 0 for 0 < i ≤ m

and m ≤ j ≤ n− 1. In the second case we also have Bdj (si) = 0 for m ≤ i ≤ n− 1 and 0 ≤ j ≤ m. In either case, we
have enough zeros in the entries of A to force det(A) = 0, since the determinant is a sum of signed products

±a0,σ0
a1,σ1

· · · an−1,σn−1
.

This proves the forward implication.

To prove the backward implication we suppose that the Schoenberg-Whitney condition is true:

Bdi (si) > 0, i = 0, . . . , n− 1.

We need to show that det(A) 6= 0.

To show this, we need to look at the variation-diminishing property of B-splines.

If x = {x1, . . . , xn} is a sequence of numbers, denote the number of sign changes in x by S−x. Precisely, S−x is
the largest integer r with the property that for some set of indices jk: 1 ≤ j1 < j2 < · · · < jr+1 ≤ n, it is true that
xjixji+1 < 0 for i = 1, . . . , r.

The remaining part of the proof follows from the collocation matrix being positive definite.

Examples:
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• Let V = P 4
3,1[0, 1, 2, 3, 4] with dimension 10, and choose the data sequence:

s1 = 0.0
s2 = 0.5
s3 = 0.6
s4 = 0.7
s5 = 1.2

s6 = 1.5
s7 = 2.5
s8 = 3.5
s9 = 3.7
s10 = 3.8

Now let t = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4} be a knot sequence such that the B-splines of degree 3 for t are a
basis of V . Then we can check the inequalities in the Schoenberg-Whitney Theorem:

0 < 0.0 < 1
0 < 0.5 < 1
0 < 0.6 < 2
0 < 0.7 < 2
1 < 1.2 < 3

1 < 1.5 < 3
2 < 2.5 < 4
2 < 3.5 < 4
3 < 3.7 < 4
3 < 3.8 < 4

Thus we can conclude that given any data function g(t), there exists a unique solution f(t) in V such that
f(si) = g(si), for i = 1, . . . , 10.

Other Properties of B-splines

• Partition of Unity

Let t = {t0, . . . , tN} be a knot sequence such that the B-splines of degree d associated to t are a basis of
V = P kd,r[u0, . . . , uk]. Then for t ∈ [u0, uk] we have:

N−d−1∑
i=0

Bdi (t) = 1.

• Bernstein knot sequence

Let t = {0, 0, . . . , 0, 1, 1, . . . , 1} = {t0, . . . , t2(d+1)} be a knot sequence consisting of d+ 1 zeros followed by d+ 1
ones. Then the B-splines associated to this knot sequence t, restricted to the interval [0, 1], are precisely the
Bernstein polynomials.

• Derivative of a B-spline function

The following derivative is similar to the derivative of the Bernstein polynomials:

d

dt
Bdi (t) = d

[
Bd−1
i (t)

ti+d − ti
−

Bd−1
i+1 (t)

ti+d+1 − ti+1

]
.
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