
Lecture 5

Main Points:

• Ordered pairs of polynomials

• Piecewise polynomial (spline) vector spaces

The vector space P 2
d :

P 2
d is simply the vector space of ordered pairs of polynomials of degree ≤ d.

Addition and scalar multiplication in P 2
d are defined componentwise:

(p1(t), p2(t)) + (q1(t), q2(t)) = (p1(t) + q1(t), p2(t) + q2(t)),

c(p1(t), p2(t)) = (cp1(t), cp2(t)).

Examples:

• some elements of P 2
2 are: (2− t + 3t2, 1− t) and (3 + t2, 5− 2t− 7t2).

• some elements of P 2
3 are: (1 − 5t + 3t3, 1 − 4t2) and (3 + 2t2, 5 − 2t − 7t2). Note: the latter ordered pair has

no degree 3 terms, which is fine since the degrees must simply be at most 3.

A basis for P 2
2 :

A basis for P 2
2 can be given by:

{(1, 0), (t, 0), (t2, 0), (0, 1), (0, t), (0, t2)}.

We can check that this set spans P 2
2 , and is also linearly independent. The spanning property is easily seen since:

(p1(t), p2(t)) = (a0 + a1t + a2t
2, b0 + b1t + b2t

2)

= a0(1, 0) + a1(t, 0) + a2(t2, 0) + b0(0, 1) + b1(0, t) + b2(0, t2).

The linear independence can be seen by appealing to the definition of linear independence. We need to show that
any linear combination of the ordered pairs can only be zero if all the coefficients are zero. Suppose we have such a
linear combination set equal to the zero vector:

a0(1, 0) + a1(t, 0) + a2(t2, 0) + b0(0, 1) + b1(0, t) + b2(0, t2) = (0, 0).

This is equivalent to having:
(a0 + a1t + a2t

2, b0 + b1t + b2t
2) = (0, 0),

which in turn implies that
a0 + a1t + a2t

2 = 0, and b0 + b1t + b2t
2 = 0.

Since these are both linear combinations in P2 of the standard basis polynomials, we know that all of the coefficients
must be zero, which follows from the linear independence of 1, t, and t2 in P2.

Other bases for P 2
2 :

We can mimic the previous basis which used the standard basis polynomials of P2, and switch to the Bernstein basis
of P2, to get the basis of P 2

2 :
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{(B2
0(t), 0), (B2

1(t), 0), (B2
2(t), 0), (0, B2

0(t)), (0, B2
1(t)), (0, B2

2(t))}.

= {((1− t)2, 0), (2(1− t)t, 0), (t2, 0), (0, (1− t)2), (0, 2(1− t)t), (0, t2)}.

Similarly, this can be done with any other basis of polynomials, such as {b0(t), b1(t), b2(t)}, to form the basis of P 2
2 :

{(b0(t), 0), (b1(t), 0), (b2(t), 0), (0, b0(t)), (0, b1(t)), (0, b2(t))}.

For example, we could take {b0(t), b1(t), b2(t)} equal to a Vandermonde basis of P2 such as {(t−1)2, (t−2)2, (t−3)2}
to get:

{((t− 1)2, 0), ((t− 2)2, 0), ((t− 3)2, 0), (0, (t− 1)2), (0, (t− 2)2), (0, (t− 3)2)}.

Basis for P k
d :

The set of k-tuples
(ti, 0, . . . , 0), (0, ti, 0, . . . , 0), . . . , (0, . . . , 0, ti)

for i = 0 . . . , d, is a basis of P k
d . There are k entries in the list for each i, so (d + 1)k in all, which says that the

dimension of P k
d is (d + 1)k.

Examples:

• P 3
1 has dimension 6 with basis:

{(1, 0, 0), (0, 1, 0), (0, 0, 1),

(t, 0, 0), (0, t, 0), (0, 0, t)}

• P 4
3 has dimension 16 with basis:

{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

(t, 0, 0, 0), (0, t, 0, 0), (0, 0, t, 0), (0, 0, 0, t),

(t2, 0, 0, 0), (0, t2, 0, 0), (0, 0, t2, 0), (0, 0, 0, t2),

(t3, 0, 0, 0), (0, t3, 0, 0), (0, 0, t3, 0), (0, 0, 0, t3)}

• P 5
2 has dimension 15 with basis:

{(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1),

(t, 0, 0, 0, 0), (0, t, 0, 0, 0), (0, 0, t, 0, 0), (0, 0, 0, t, 0), (0, 0, 0, 0, t),

(t2, 0, 0, 0, 0), (0, t2, 0, 0, 0), (0, 0, t2, 0, 0), (0, 0, 0, t2, 0), (0, 0, 0, 0, t2)}

Next, we develop a different basis of P k
d . We start by including all the elements:

(1, 1, . . . , 1), (t, t, . . . , t), . . . , (td, td, . . . , td)

These are d + 1 elements, corresponding to the standard basis of Pd. By choosing coefficients for these elements we
can obtain any polynomial of degree d or less, repeated on each component. In order to form a basis we need to
obtain any element of P k

d of the form:
(p1, p2, . . . , pk).

We can do this with the following additional elements:

(0, 1, . . . , 1), (0, t, . . . , t), . . . , (0, td, . . . , td),
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(0, 0, 1, . . . , 1), (0, 0, t, . . . , t), . . . , (0, 0, td, . . . , td),

...

(0, . . . , 0, 1), (0, . . . , 0, t), . . . , (0, . . . , 0, td).

In order to see that the above elements span P k
d , we first write:

(p1, p2, . . . , pk) = (p1, p1, . . . , p1)

= +(0, p2 − p1, . . . , p2 − p1)

= +(0, 0, p3 − p2 . . . , p3 − p2)

= +(0, 0, 0, p4 − p3 . . . , p4 − p3)

=
...

= +(0, 0, 0, . . . , 0, pk − pk−1)

Note: In the above sum each line makes a correction to the previous line so that one more component has the desired
polynomial. Also, each line can be spanned by exactly the corresponding line in the following basis:

{(1, 1, . . . , 1), (t, t, . . . , t), . . . , (td, td, . . . , td),

(0, 1, . . . , 1), (0, t, . . . , t), . . . , (0, td, . . . , td),

(0, 0, 1, . . . , 1), (0, 0, t, . . . , t), . . . , (0, 0, td, . . . , td),

...

(0, . . . , 0, 1), (0, . . . , 0, t), . . . , (0, . . . , 0, td)}

Examples:

• P 3
1 has dimension 6 with basis:

{(1, 1, 1), (t, t, t), (0, 1, 1), (0, t, t), (0, 0, 1), (0, 0, t)}

• Write the element (2t− 1, 3, 5t) in P 3
1 in terms of the two bases given so far. Call these two bases:

B1 = {(1, 0, 0), (t, 0, 0), (0, 1, 0), (0, t, 0), (0, 0, 1), (0, 0, t)}

and
B2 = {(1, 1, 1), (t, t, t), (0, 1, 1), (0, t, t), (0, 0, 1), (0, 0, t)}.

In the first case:

(2t− 1, 3, 5t) = −(1, 0, 0) + 2(t, 0, 0) + 3(0, 1, 0) + 0(0, t, 0) + 0(0, 0, 1) + 5(0, 0, t).

For the second case, we need to write

p1(t) = 2t− 1, p2(t) = 3, and p3(t) = 5t.

Then we also have
p2(t)− p1(t) = 4− 2t, and p3(t)− p2(t) = 5t− 3.

Now we can follow the method above for

(p1, p2, p3) = (p1, p1, p1) + (0, p2 − p1, p2 − p1) + (0, 0, p3 − p2)

to obtain:
(2t− 1, 3, 5t) = −(1, 1, 1) + 2(t, t, t) + 4(0, 1, 1)− 2(0, t, t)− 3(0, 0, 1) + 5(0, 0, t).
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• Find the coordinate vectors of the element (2t− 1, 3, 5t) in P 3
1 with respect to the bases B1 and B2. Based on

the coefficients from the previous example we have the coordinate vectors:

B1 :


−1
2
3
0
0
5

 and B2 :


−1
2
4
−2
−3
5

 .

• P 4
3 has dimension 16 with basis:

{(1, 1, 1, 1), (t, t, t, t), (t2, t2, t2, t2), (t3, t3, t3, t3),

(0, 1, 1, 1), (0, t, t, t), (0, t2, t2, t2), (0, t3, t3, t3),

(0, 0, 1, 1), (0, 0, t, t), (0, 0, t2, t2), (0, 0, t3, t3),

(0, 0, 0, 1), (0, 0, 0, t), (0, 0, 0, t2), (0, 0, 0, t3)}

• P 5
2 has dimension 15 with basis:

{(1, 1, 1, 1, 1), (t, t, t, t, t), (t2, t2, t2, t2, t2),

(0, 1, 1, 1, 1), (0, t, t, t, t), (0, t2, t2, t2, t2),

(0, 0, 1, 1, 1), (0, 0, t, t, t), (0, 0, t2, t2, t2),

(0, 0, 0, 1, 1), (0, 0, 0, t, t), (0, 0, 0, t2, t2),

(0, 0, 0, 0, 1), (0, 0, 0, 0, t), (0, 0, 0, 0, t2)}

Piecewise polynomial functions:

A piecewise polynomial function (or ppf) is a function defined on a sequence of intervals by various polynomials. If
the sequence of intervals is [u0, u1], [u1, u2], . . . , [uk−1, uk], then we denote this sequence with the notation:

[u0, u1, . . . , uk].

The endpoints of this sequence of intervals are u0 and uk, and all the other values ui for i = 1 . . . , k − 1 are called
breakpoints. A ppf defined on this sequence of intervals has the following general form, where p1(t), . . . , pk(t) are
polynomials. Note that the intervals which are used by each polynomial are closed on the left and open on the right
for p1 through pk−1 and then closed on both ends for pk. This is done so that the function f is defined exactly once
for all points in the closed interval [u0, uk].

f(t) =


p1(t), u0 ≤ t < u1

p2(t), u1 ≤ t < u2

...
...

pk(t), uk−1 ≤ t ≤ uk

Examples:
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• A ppf defined by cubic polynomials on the sequence of intervals [0, 2, 4]:

f(t) =

{
p1(t) = t3 − 2t2 + t− 5, 0 ≤ t < 2
p2(t) = 2t3 − 8t2 + 13t− 3, 2 ≤ t ≤ 4

• A ppf defined by linear polynomials on the sequence of intervals [0, 1, 2, 3, 4]:

f(t) =


p1(t) = 2t− 5, 0 ≤ t < 1
p2(t) = 4, 1 ≤ t < 2
p3(t) = t− 1, 2 ≤ t < 3
p4(t) = 3t + 7, 3 ≤ t ≤ 4

The piecewise polynomial vector space P k
d [u0, u1, . . . , uk].

The set of all piecewise polynomial functions on the sequence of intervals [u0, u1, . . . , uk] forms the vector space which
we call P k

d [u0, u1, . . . , uk]. Addition and scalar multiplication in this vector space are given simply by addition of
functions and real number multipication of functions. So this vector space is a subspace of the vector space F [u0, uk]
of all functions on the interval [u0, uk].

Correspondence between P k
d and P k

d [u0, u1, . . . , uk]:

Any ordered k-tuple of polynomials (p1(t), p2(t), . . . , pk(t)) in P k
d can be converted into a ppf in P k

d [u0, u1, . . . , uk],
given by:

f(t) =


p1(t), u0 ≤ t < u1

p2(t), u1 ≤ t < u2

...
...

pk(t), uk−1 ≤ t ≤ uk

This process can also be reversed by taking this ppf and stripping away all of the information about intervals and
forming the ordered k-tuple of the polynomials.

Examples:

• The element (t, 1, 2− t) in P 3
1 corresponds to the ppf

f(t) =

 t, 0 ≤ t < 1
1, 1 ≤ t < 2
2− t, 2 ≤ t ≤ 3

in P 3
1 [0, 1, 2, 3].

• The element (1− 3t + t2, 4, 2− t2, t + 5) in P 4
2 corresponds to the ppf

f(t) =


1− 3t2t , 0 ≤ t < 3
4, 3 ≤ t < 5
2− t2, 5 ≤ t < 6
t + 5, 6 ≤ t ≤ 8

in P 3
1 [0, 3, 5, 6, 8].

Isomorphism between P k
d and P k

d [u0, u1, . . . , uk]:

The above correspondence gives a dictionary between the ordered k-tuples of polynomials, and ppf’s on a given
sequence of intervals. It is important to note that this correspondence preserves linear algebra constructs. In
particular, if

(p1(t), p2(t), . . . , pk(t)) and (q1(t), q2(t), . . . , qk(t))
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have corresponding ppf’s f(t) and g(t), and

(p1(t), p2(t), . . . , pk(t)) + (q1(t), q2(t), . . . , qk(t)) = (r1(t), r2(t), . . . , rk(t))

and
f(t) + g(t) = h(t),

then it must the case that the ordered k-tuple

(r1(t), r2(t), . . . , rk(t))

corresponds to the ppf h(t). Further, all linear algebra calculations can be transferred back and forth between these
two vector spaces under this correspondence.

Modified bases for P k
d :

Since we have many bases for Pd, it is also possible to use these to find other bases for P k
d . In general, if b0(t), . . . , bd(t)

is any basis of Pd, then we can construct the set of k-tuples

(bi(t), 0, . . . , 0), (0, bi(t), 0, . . . , 0), . . . , (0, . . . , 0, bi(t))

for i = 0 . . . , d, which is a basis of P k
d . There are k entries in the list for each i, so (d+1)k in all, which again exhibits

the fact that the dimension of P k
d is (d + 1)k.

6


