
Lecture 8

Main Points:

• Recursive form and third proof of existence and uniqueness

• Divided differences

• Newton form and basis

• Leibniz formula

Advantages of the Newton Form

The two previous forms of the interpolating polynomial, in standard basis and Lagrange basis, have some disadvan-
tages which can be removed by considering the Newton form. In particular, adding a new interpolation point in the
previous two cases requires setting up a new linear system or a new set of Lagrange polynomials. In the case of the
Newton form, we can recycle all of our work and simply add one more term to the interpolating polynomial in order
to match one more point. Before we define the Newton form, we will first give another method to prove the existence
and uniqueness of the interpolating polynomial, which will then give rise to the Newton form.

Third proof of Existence and Uniqueness of Interpolating Polynomial.

This proof is based on a recursive formula and an induction argument. So we will need a base case, with d = 0. The
polynomial interpolation problem for one data point is trivial. In particular, to find the polynomial of degree zero
that matches a data function g(t) at t0, we simply write the constant function

p(t) = g(t0).

This is the base case. Now, for the induction step we make the assumption that the interpolating polynomial exists
for degrees ≤ d. This is the induction hypothesis. Then assuming that we have data values t0, . . . , td, and data
function g(t), we can define, based on the induction hypothesis, two polynomials of degree ≤ d− 1:

p0(t), with data values t0, t1, . . . , td−1,

and
p1(t), with data values t1, t2, . . . , td.

This means that
p0(ti) = g(ti), i = 0, . . . , d− 1, and p1(ti) = g(ti), i = 1, . . . , d.

Assuming the existence of these two polynomials, we then define:

p(t) =
t− t0
td − t0

p1(t) +
td − t

td − t0
p0(t).

One easily checks now that
p(t0) = p0(t0) = g(t0) and p(td) = p1(td) = g(td).

Then we can also check the middle values ti with 1 ≤ i ≤ d − 1, using the fact that for such i we have p0(ti) =
g(ti) = p1(ti):

p(ti) =
ti − t0
td − t0

p1(ti) +
td − ti
td − t0

p0(ti)

=
ti − t0
td − t0

g(ti) +
td − ti
td − t0

g(ti)
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=

[
ti − t0
td − t0

+
td − ti
td − t0

]
g(ti)

=

[
td − t0
td − t0

]
g(ti)

= g(ti)

Note that since p0(t) and p1(t) each have degree ≤ d− 1 it must be that p(t) is a sum of polynomials of degree ≤ d
and hence p(t) is in Pd. This shows that the interpolating polynomial p(t) exists in Pd.

To prove again the uniqueness of the interpolating polynomial, we suppose that two such polynomials p(t) and q(t)
exist in Pd, and define:

f(t) = p(t)− q(t).

Then f(t) is also in Pd and since p(t) and q(t) satisfy the interpolation conditions, we have:

f(ti) = p(ti)− q(ti) = g(ti)− g(ti) = 0, i = 0, . . . , d.

Thus f(t) is a polynomial in Pd with d + 1 distinct zeros t0, . . . , td. But a nonzero polynomial of degree at most d
can have at most d zeros, since each zero corresponds to a factor of f . Only the zero polynomial in Pd can have more
than d zeros, so in fact it must be that f(t) = 0(t) which means that p(t) = q(t). This shows that the interpolating
polynomial is unique in Pd.

Definition of the Newton basis:

Given d real numbers t0, . . . , td−1, which may or may not be distinct, we define the Newton basis of Pd as

{1, t− t0, (t− t0)(t− t1), (t− t0)(t− t1)(t− t2), . . . , (t− t0)(t− t1)(t− t2) · · · (t− td−1)}.

This can easily be seen to be linearly independent since the elements are of increasing degree, giving a triangular
matrix of coordinate vectors with respect to the standard basis, with determinant 1.

Examples:

• The Newton basis of P2 for the values t0 = 1 and t1 = 3 is:

{1, t− 1, (t− 1)(t− 3)}.

• The Newton basis of P2 for the values t0 = 3 and t1 = 3 is:

{1, t− 3, (t− 3)2},

which is also a shifted basis.

In order to define the Newton form we need to define divided differences. The divided difference is a number which
is obtained from the data specified for a polynomial interpolation problem. In other words, the input is the data
t0, t1, . . . , td and g, and the output is the number [t0, t1, . . . , td]g. As we see below, this number is defined using the
interpolating polynomial p(t).

Definition of divided differences:

The divided difference [t0, t1, . . . , td]g is defined to be the coefficient of td in the interpolating polynomial p(t) in Pd

with data function g and data values t0, t1, · · · , td. In other words, if p(t) = a0 + a1t + a2t
2 + · · ·+ adt

d in standard
basis form, then

[t0, t1, . . . , td]g = ad.
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Note: because the interpolating polynomial depends only on the input data and data function g(t), it is not dependent
on the order of the data. This also means that the order of the data values in the divided difference can be changed
without affecting the outcome.

Examples:

• Find the divided difference [0, 1, 2]g with g(t) = 2t. Since we already worked out the interpolating polynomial
p(t) above to be 1 + 1

2 t + 1
2 t

2, we see from the definition that [0, 1, 2] is the coefficient of t2 which is 1
2 , so

[0, 1, 2]g =
1

2
.

Note: From the comments above, since we are only taking the coefficient of t2, the input data can be in any
order, so we have:

[0, 1, 2]g = [0, 2, 1]g = [1, 0, 2]g = [1, 2, 0]g = [2, 0, 1]g = [2, 1, 0]g =
1

2
.

• Find the divided difference [0, 1] with g(t) = 2t. For this data, the interpolating polynomial is just the line
through the points (0, g(0)) and (1, g(1)), or (0, 1) and (1, 2). This line is p(t) = 1 + t. So

[0, 1]g = 1.

Since the sequence t0, t1, . . . , td has many possible subsequences, each of which may be used in the recursion below,
we may write ti, ti+1, . . . , ti+k to represent the most general such sequence.

Recursion Property for divided differences:

The divided differences, defined above, also satisfy the recursion:

[t0, t1, . . . , td]g =
[t1, t2, . . . , td]g − [t0, t1, . . . , td−1]g

td − t0
.

Similarly:

[ti, ti+1, . . . , ti+k]g =
[ti+1, ti+2, . . . , ti+k]g − [ti, ti+1, . . . , ti+k−1]g

ti+k − ti
.

Examples:

• The divided differences can be computed in the following table format, here for d = 2.

t0 [t0]g = g(t0)

[t0, t1]g = [t1]g−[t0]g
t1−t0

t1 [t1]g = g(t1) [t0, t1, t2]g = [t1,t2]g−[t0,t1]g
t2−t0

[t1, t2]g = [t2]g−[t1]g
t2−t1

t2 [t2]g = g(t2)

• Here is an example with specific inputs t0 = 0, t1 = 1, t2 = 2, and g(0) = 3, g(1) = −2, and g(2) = 1.

0 3
−2−3
1−0 = −5

1 −2 3−(−5)
2−0 = 4

1−(−2)
2−1 = 3

2 1
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Proof of the Recursive Property

To prove the recursive property for divided differences we use the recursive form of the interpolating polynomial:

p(t) =
t− t0
td − t0

p1(t) +
td − t

td − t0
p0(t),

where the polynomials p0(t) and p1(t) in Pd−1 are also interpolating polynomials:

p0(t), with data values t0, t1, . . . , td−1,

and
p1(t), with data values t1, t2, . . . , td.

Now we recall the definition of the operator [t0, . . . , td]g as the coefficient of td in p(t). To extract the coefficients of
td we suppose that

p0(t) = a0 + a1t + · · ·+ ad−1t
d−1,

and
p1(t) = b0 + b1t + · · ·+ bd−1t

d−1.

Then:

p(t) =
t− t0
td − t0

(
a0 + a1t + · · ·+ ad−1t

d−1
)

+
td − t

td − t0

(
b0 + b1t + · · ·+ bd−1t

d−1
)
.

By the induction hypothesis, we also can say that

ad−1 = [t0, t1, . . . , td−1]g,

and
bd−1 = [t1, t2, . . . , td]g.

So, the coefficient of td in p(t) is

[t0, t1, . . . , td]g =
1

td − t0
ad−1 +

−1

td − t0
bd−1

=
1

td − t0
[t0, t1, . . . , td−1]g +

−1

td − t0
[t1, t2, . . . , td]g

=
[t1, t2, . . . , td]g − [t0, t1, . . . , td−1]g

td − t0
.

Newton Form of the interpolating polynomial

The expansion of the interpolating polynomial p(t) with data t0, t1, · · · , td and g, in terms of the Newton basis is
called the Newton Form, and can be written as:

p(t) =

d∑
i=0

[t0, . . . , ti]gNi(t),

where N0(t) = 1, N1(t) = t− t0, N2(t) = (t− t0)(t− t1), . . . , and Nd(t) = (t− t0)(t− t1) · · · (t− td−1).

Examples:

• Find the Newton form of the interpolating polynomial p(t) for the specific inputs t0 = 2, t1 = 4, and g(2) = 6,
g(4) = −2. The divided difference table is:

t0 [t0]g
[t0, t1]g

t1 [t1]g
or

2 6
−2−6
4−2 = −4

4 −2
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The numbers along the top diagonal are the coefficients in the Newton form:

p(t) = [t0]g + [t0, t1]g · (t− t0)

= 6 + (−4) · (t− 2)

= 14− 4t,

which is easily seen to satisfy the interpolation conditions: p(2) = 6, p(4) = −2.

• Find the Newton form of the interpolating polynomial p(t) for the specific inputs t0 = 0, t1 = 1, t2 = 2, and
g(0) = 3, g(1) = −2, and g(2) = 1. The divided difference table which we computed in a previous example is:

t0 [t0]g
[t0, t1]g

t1 [t1]g [t0, t1, t2]g
[t1, t2]g

t2 [t2]g

or

0 3
−2−3
1−0 = −5

1 −2 3−(−5)
2−0 = 4

1−(−2)
2−1 = 3

2 1

The numbers along the top diagonal are the coefficients in the Newton form:

p(t) = [t0]g + [t0, t1]g · (t− t0) + [t0, t1, t2]g · (t− t0)(t− t1)

= 3 + (−5) · (t− 0) + 4 · (t− 0)(t− 1)

= 3− 5t + 4t(t− 1),

which is easily seen to satisfy the interpolation conditions: p(0) = 3, p(1) = −2, and p(2) = 1.

• Find the Newton form of the interpolating polynomial p(t) for the specific inputs t0 = 0, t1 = 1, t2 = 2, t3 = 3,
and g(0) = 2, g(1) = 3, g(2) = 4, and g(3) = −1. The divided difference table is:

t0 [t0]g
[t0, t1]g

t1 [t1]g [t0, t1, t2]g
[t1, t2]g [t0, t1, t2, t3]g

t2 [t2]g [t1, t2, t3]g
[t2, t3]g

t3 [t3]g

or

0 2
3−2
1−0 = 1

1 3 1−1
2−0 = 0

4−3
2−1 = 1 −3−0

3−0 = −1

2 4 −5−1
3−1 = −3

−1−4
3−2 = −5

3 −1

The numbers along the top diagonal are the coefficients in the Newton form:

p(t) = [t0]g + [t0, t1]g · (t− t0) + [t0, t1, t2]g · (t− t0)(t− t1)[t0, t1, t2, t3]g · (t− t0)(t− t1)(t− t2)

= 2 + 1 · (t− 0) + 0 · (t− 0)(t− 1)− 1 · (t− 0)(t− 1)(t− 2)

= 2 + t− t(t− 1)(t− 2),

which is easily seen to satisfy the interpolation conditions: p(0) = 2, p(1) = 3, p(2) = 4 and p(3) = −1.

• Find the Newton form of the interpolating polynomial p(t) for the specific inputs t0 = 0, t1 = 1, t2 = 2, and
g(0) = 2, g(1) = 3, and g(2) = 4. Note: This is just the first three data points from the previous example.
Also note: the three points are collinear, so we already know that there is a linear polynomial passing through
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them. The divided difference table is:

0 2
3−2
1−0 = 1

1 3 1−1
2−0 = 0

4−3
2−1 = 1

2 4

The numbers along the top diagonal are the coefficients in the Newton form:

p(t) = [t0]g + [t0, t1]g · (t− t0) + [t0, t1, t2]g · (t− t0)(t− t1)

= 2 + 1 · (t− 0) + 0 · (t− 0)(t− 1)

= 2 + t,

which is easily seen to satisfy the interpolation conditions: p(0) = 2, p(1) = 3, p(2) = 4.

Leibniz’ Rule for Divided Differences

Let f(t) = g(t)h(t). Then

[ti, ti+1, . . . , ti+k]f =

i+k∑
r=i

([ti, . . . , tr]g)([tr, . . . , ti+k]h).

Note: Draw the divided difference triangles for g and h, and label them T1 and T2. Then make two lists, first along
the top of T1 from left to right, then along the bottom of T2, from right to left. Each of these lists has length k + 1
and can be viewed as a vector. The dot product of these two vectors is the same as the sum above.

Examples:

• For degree d = 2 the Leibniz formula looks like this:

[t0, t1, t2]f = [t0]g[t0, t1, t2]h + [t0, t1]g[t1, t2]h + [t0, t1, t2]g[t2]h.

The coefficients come from the two divided difference tables:

t0 [t0]g
[t0, t1]g

t1 [t1]g [t0, t1, t2]g
[t1, t2]g

t2 [t2]g

and

t0 [t0]h
[t0, t1]h

t1 [t1]h [t0, t1, t2]h
[t1, t2]h

t2 [t2]h

• Let f(t) = |t|(t− 2)2, with g(t) = |t|, and h(t) = (t− 2)2, and take t0 = −1, t1 = 0, and t2 = 1. We then have
the tables:

−1 1
−1

0 0 1
1

1 1

and

−1 9
−5

0 4 1
−3

1 1

Then we have the corresponding Leibniz formula for [−1, 0, 1]f :
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[−1, 0, 1]f = [−1]g[−1, 0, 1]h + [−1, 0]g[0, 1]h + [−1, 0, 1]g[1]h

= (1)(1) + (−1)(−3) + (1)(1)

= 5

We can confirm this by constructing the table for f alone:

−1 9
−9

0 0 5
1

1 1

This confirms directly that [−1, 0, 1]f = 5.

• Let f(t) = (t− 2)2+(t− 2), with g(t) = (t− 2)2+, and h(t) = t− 2, and take t0 = 1, t1 = 2, and t2 = 3. We then
have the tables:

1 0
0

2 0 1
2

1
3 1

and

1 −1
1

2 0 0
1

3 1

Then we have the corresponding Leibniz formula for [1, 2, 3]f :

[1, 2, 3]f = [1]g[1, 2, 3]h + [1, 2]g[2, 3]h + [1, 2, 3]g[3]h

= (0)(0) + (0)(1) + (
1

2
)(1)

=
1

2

We can confirm this by constructing the table for f alone:

1 0
0

2 0 1
2

1
3 1
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