
Lecture 9

Main Points:

• Proof of Newton form

• Proof of Leibniz’ Rule

• Osculating polynomials

Proof of the Newton form:

To establish the validity of the Newton form, we suppose that the interpolating polynomial p(t) with (distinct) data
values t0, . . . , td and data function g(t) exists and is unique in Pd, and also that the interpolating polynomial p0(t)
with the subset of data values t0, t1, . . . , td−1 exists and is unique in Pd−1. For convenience, we will rename the
polynomial p0(t) as qd−1(t), to indicate that it has degree d− 1. Then we can consider the polynomial

f(t) = p(t)− qd−1(t),

which is also in Pd, and has the property

f(ti) = p(ti)− qd−1(ti) = g(ti)− g(ti) = 0, i = 0, . . . , d− 1.

This says that we can factor the polynomial f(t) to obtain:

f(t) = C · (t− t0)(t− t1) · · · (t− td−1),

where C is the coefficient of td in this polynomial. But since qd−1(t) has degree at most d− 1, we see that C is the
coefficient of td in p(t), which is by definition the divided difference:

C = [t0, t1, . . . , td]g.

Thus we obtain:
p(t)− qd−1(t) = [t0, t1, . . . , td]g · (t− t0)(t− t1) · · · (t− td−1),

or:
p(t) = qd−1(t) + [t0, t1, . . . , td]g · (t− t0)(t− t1) · · · (t− td−1).

Now, the argument we just applied to p(t) can also be carried out for qd−1(t), supposing that qd−2(t) is the interpo-
lating polynomial with the data values: t0, t1, . . . , td−2, and we obtain:

qd−1(t) = qd−2(t) + [t0, t1, . . . , td−1]g · (t− t0)(t− t1) · · · (t− td−2),

Continuing in this we way, we will eventually arrive at the statement

q1(t) = q0(t) + [t0, t1]g · (t− t0),

where q0(t) is the interpolating polynomial of degree 0 with the data value t0 and data function g(t), in other words
q0(t) = g(t0) = [t0]g is constant. Piecing all of this back together, we arrive at the Newton form:

p(t) = [t0]g + [t0, t1]g · (t− t0) + [t0, t1, t2]g · (t− t0)(t− t1) + · · ·+ [t0, t1, . . . , td]g · (t− t0)(t− t1) · · · (t− td−1).

Proof of Leibniz’ Rule for Divided Differences
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Let f(t) = g(t)h(t). Then the general form of Leibniz’ Rule looks like:

[ti, ti+1, . . . , ti+k]f =

i+k∑
r=i

([ti, . . . , tr]g)([tr, . . . , ti+k]h).

For degree d = 2 the Leibniz formula looks like this:

[t0, t1, t2]f = [t0]g[t0, t1, t2]h + [t0, t1]g[t1, t2]h + [t0, t1, t2]g[t2]h.

First let’s check the base case, d = 0. In this case there is only one entry in each of the tables for f , g, and h. In
particular, we have

[t0]f = f(t0) = g(t0)h(t0) = [t0]g[t0]h.

We can also do the linear case d = 1 which says that:

[t0, t1]f = [t0]g · [t0, t1]h + [t0, t1]g · [t1]h.

We can check this easily since the divided differences in this case are just the slope of a line through two points. In
other words:

[t0, t1]f =
f(t1)− f(t0)

t1 − t0
, [t0, t1]g =

g(t1)− g(t0)

t1 − t0
, and [t0, t1]h =

h(t1)− h(t0)

t1 − t0
.

Then the right hand side of Leibniz’ rule becomes:

[t0]g · [t0, t1]h + [t0, t1]g · [t1]h = g(t0) · h(t1)− h(t0)

t1 − t0
+

g(t1)− g(t0)

t1 − t0
h(t1)

=

=
g(t0)h(t1)− g(t0)h(t0) + g(t1)h(t1)− g(t0)h(t1)

t1 − t0
=

=
g(t1)h(t1)− g(t0)h(t0)

t1 − t0
=

=
f(t1)− f(t0)

t1 − t0
=

= [t0, t1]f

For the degree d = 2 case, we give a proof which also extends to the higher degree cases, using the Newton forms
with data values t0, t1, and t2, and each of the data functions f , g, and h. Call these Newton forms p(t), q(t) and
r(t), respectively. We will write the Newton forms slightly differently, taking advantage of the fact that the order of
the data values does not matter. In particular, we will reverse the order of the data values for the Newton form r(t),
with data function h. The divided difference tables for q(t) and r(t) then look like this:

t0 [t0]g
[t0, t1]g

t1 [t1]g [t0, t1, t2]g
[t1, t2]g

t2 [t2]g

and

t2 [t2]h
[t1, t2]h

t1 [t1]h [t0, t1, t2]h
[t0, t1]h

t0 [t0]h

It is tempting to think that the product of the Newton forms q and r is equal to the Newton form p. This is because
of the property:

q(ti) · r(ti) = g(ti) · h(ti) = f(ti), i = 0, 1, 2.
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This says that the product q(t)r(t) satisfies the interpolation conditions. However, this product is only guaranteed
to have degree ≤ 4, but we know that p(t) exists in P2. But even though the product does not give the Newton form
p, we can still obtain p by subtracting off part of the product.

From the above tables we obtain the two Newton forms:

q(t) = [t0]g + [t0, t1]g · (t− t0) + [t0, t1, t2]g · (t− t0)(t− t1),

and
r(t) = [t2]h + [t1, t2]h · (t− t2) + [t0, t1, t2]h · (t− t1)(t− t2).

Then the product of these is:

q(t) · r(t) = ([t0]g + [t0, t1]g · (t− t0) + [t0, t1, t2]g · (t− t0)(t− t1))

· ([t2]h + [t1, t2]h · (t− t2) + [t0, t1, t2]h · (t− t2)(t− t1))

= F (t) + G(t)

where

F (t) = [t0]g · [t2]h (degree 0 term)

+ [t0]g · [t1, t2]h · (t− t2) + [t2]h · [t0, t1]g · (t− t0) (degree 1 terms)

+ [t0]g · [t0, t1, t2]h · (t− t2)(t− t1)

+ [t0, t1]g · [t1, t2]h · (t− t0)(t− t2) (degree 2 terms)

+ [t0, t1, t2]g · [t2]h · (t− t0)(t− t1)

and

G(t) = [t0, t1]g · [t0, t1, t2]h · (t− t0)(t− t1)(t− t2)

+ [t1, t2]h · [t0, t1, t2]g · (t− t0)(t− t1)(t− t2) (degree 3 terms)

+ [t0, t1, t2]g · [t0, t1, t2]h · (t− t0)(t− t1)2(t− t2). (degree 4 term)

Next, we note that G(t0) = G(t1) = G(t2) = 0. But then we have

q(ti) · r(ti) = g(ti) · h(ti) = f(ti)

= F (ti) + G(ti)

= F (ti)

for i = 0, 1, 2. In summary,
F (ti) = f(ti), i = 0, 1, 2,

and F (t) is in P2. By the uniqueness of the interpolating polynomial we must have

F (t) = p(t).

Finally, to get the divided difference [t0, t1, t2]f we simply extract the coefficient of t2 in p(t), which is the same as
F (t). From the above we can see that the t2 terms for F (t) have exactly the coefficients predicted by Leibniz’ rule:

[t0, t1, t2]f = [t0]g · [t0, t1, t2]h + [t0, t1]g · [t1, t2]h + [t0, t1, t2]g · [t2]h.

This completes the proof of Leibniz’ rule for d = 2.
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For the general case, we can use the same proof as for d = 2, obtaining the sum F (t) + G(t), where F (t) has degree
≤ d and G(ti) = 0 for i = 0, . . . , d. We can then extract Leibniz’ rule from the sum of terms which contain td.

Examples:

• Let f(t) = |t|(t− 2)2, with g(t) = |t|, and h(t) = (t− 2)2, and take t0 = −1, t1 = 0, and t2 = 1. We then have
the tables:

−1 1
−1

0 0 1
1

1 1

and

−1 9
−5

0 4 1
−3

1 1

Then we have the corresponding Leibniz formula for [−1, 0, 1]f :

[−1, 0, 1]f = [−1]g[−1, 0, 1]h + [−1, 0]g[0, 1]h + [−1, 0, 1]g[1]h

= (1)(1) + (−1)(−3) + (1)(1)

= 5

We can confirm this by constructing the table for f alone:

−1 9
−9

0 0 5
1

1 1

This confirms directly that [−1, 0, 1]f = 5.

• Let f(t) = (t− 2)2+(t− 2), with g(t) = (t− 2)2+, and h(t) = t− 2, and take t0 = 1, t1 = 2, and t2 = 3. We then
have the tables:

1 0
0

2 0 1
2

1
3 1

and

1 −1
1

2 0 0
1

3 1

Then we have the corresponding Leibniz formula for [1, 2, 3]f :

[1, 2, 3]f = [1]g[1, 2, 3]h + [1, 2]g[2, 3]h + [1, 2, 3]g[3]h

= (0)(0) + (0)(1) + (
1

2
)(1)

=
1

2

We can confirm this by constructing the table for f alone:
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1 0
0

2 0 1
2

1
3 1

Definition of the osculating polynomial

Instead of matching only values of a data function, we might want to also match derivative values. In the following
definition, we take repeated data values to mean that we are requiring consecutive matching of derivatives. It turns
out to be best to require derivatives in sequence, without any gaps, which is also referred to as Hermite interpolation.

Given any nondecreasing sequence of real numbers t0 ≤ t1 ≤ · · · ≤ td and a function g(t) with values g(ti) at these
numbers, suppose further that g is differentiable to order ri at each ti, where ri is determined by ri = 0 if ti < ti+1,
and ri = k if ti = ti+1 = · · · = ti+k and ti+k < ti+k+1. Then define an osculating polynomial p(t) with the data
sequence t0, t1, · · · , td and data function g(t) as a polynomial which satisfies:

p(j)(ti) = g(j)(ti) for i = 0, . . . , d, and j = 0, . . . , ri.

Note: If we change the order of the sequence in such a way that equal values are still consecutive, the definition
of the osculating polynomial is not affected. So we can allow changes in the order of the data as long as whenever
ti = tj , with i < j, then also ti = tk for all k satisfying i < k < j.

Examples:

• Find a polynomial which matches the data function g(t) =
1

t− 2
for the data sequence t0 = 0, t1 = 0, and

t2 = 1. This means that we want p(t) in P2 satisfying: p(0) = g(0), p′(0) = g′(0) and p(1) = g(1). Since

g′(t) =
−1

(t− 2)2
, we need to find p(t) satisfying:

p(0) = −1

2
, p′(0) = −1

4
and p(1) = −1.

We can find such a p(t) with the standard basis and a linear system: We solve for the coefficients a0, a1, and
a2 with

p(t) = a0 + a1t + a2t
2, and p′(t) = a1 + 2a2t.

The linear system is then:  1 0 0 | − 1
2

0 1 0 | − 1
4

1 1 1 | −1


which has reduced form:  1 0 0 | − 1

2
0 1 0 | − 1

4
0 0 1 | − 1

4


and solution a2 = 1

4 , a1 + 2a2 = − 1
4 , or a1 = − 3

4 , and a0 = − 1
2 . So the osculating polynomial p(t) is

p(t) = −1

2
− 1

4
t− 1

4
t2,

with

p′(t) = −1

4
− 1

2
t.

Existence and Uniqueness of the osculating polynomial

It is a fact that for any nondecreasing sequence t0 ≤ t1 ≤ · · · ≤ td of real numbers, and function g, the osculating
polynomial p(t) with data function g and data values t0, t1, · · · , td exists as an element of Pd, and is unique.
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