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Abstract. This paper presents a generalization of the neo-Riemannian PLR group to the set
of triads with inversions (major, minor, diminished and augmented). A second generalization
is proposed, using an extended system of seventh chords with inversions. Both the sets of
triads and seventh chords are defined with constraints on semitone separation of voices. In
the case of triads, the set of parsimonious transformations is shown to have the structure of a
semi-direct product of groups of the form SnnZn−1

12 , where n is the number of chord types in
the set.
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1 Introduction

1.1 Constraint-based systems

In this paper we consider voicings of triads and seventh chords from the viewpoint of semitone
separation constraints.

Constraint-based definitions of chords are meant to yield a collection of chords which are close
together in the sense of parsimonious voice-leading. In particular, such chords should have spacing
between voices which are somewhat similar. We choose to specify such spacing by focusing on the
total spread between the highest and lowest pitches, and also the vector of spreads between adjacent
pitches. This method also seems to capture some of the well-known and useful chord collections in
the case of triads and seventh chords.

The cost of this approach is that we consider systems of chord-types in an absolute sense, not as
pitch-class sets. Each chord type is a root position or chord inversion which can be described by the
semitone separation type. The benefit of this approach is that we can include chords which have
different numbers of inversion types into one system for the purpose of parsimonious voice-leading.
For example, the augmented triad has only one separation type, unlike the other triads. Similarly,
the dominant seventh chord with flat fifth has only two separation types, unlike the other seventh
chords.

The two systems of constraints can be described simply as follows. For the system of major, minor,
diminished, and augmented triads, we constrain the separation between pairs of consecutive notes
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to be from 3 to 6 semitones, and the separation between the upper and lower notes to be from 6
to 9 semitones. All of these triads and their chord inversions are recovered precisely in this way. A
similar system of sevenths chords can be defined with separation between pairs of consecutive notes
to be from 1 to 4 semitones, and the separation between the upper and lower notes to be from 8
to 11 semitones. All of the standard seventh chords and their chord inversions are recovered in this
way, as well as two additional chords obtained from the dominant seventh by lowering or raising the
fifth by one semitone.

In order to explore the transformations between these chord types, we consider chords to be ordered
tuples of integers such as (a, b, c) or (a, b, c, d), with a < b < c < d. This distinguishes a root position
chord from its inversions, as separate chord types. In this context, the concept of pitch class set can
still be invoked on these chord collections as an equivalence relation. It is also convenient to work
with equivalence classes of chord types modulo twelve, but still preserving the types. For example,
the set of triad types modulo 12, with C as 0, includes the B major triad in root position, represented
as (11, 15, 18) or as (−1, 3, 6), but not as (3, 6, 11). The latter is of course the first inversion, which
in this context is not equivalent as a chord type to the previous two.

What is gained from this point of view is a simple approach to parsimonious voice-leading, and the
induced groups of transformations. We recover the PLR group for triads as a subgroup of the larger
parsimony group, which we show to be isomorphic to S10 n Z9

12.

These methods can be put into a wider context, where we start with a system of chord types and
consider the group generated by basic parsimonious transformations which swap chord types by
changing only one voice by one semitone. If there are n chord types which are defined with a system
of constraints similar to the two cases we describe, then it is interesting to investigate whether it is
possible to describe the parsimony group as Sn n Zn−112 .

1.2 Background

In his foundational work, David Lewin [7] explored music theory and composition from the per-
spective of transformational theory. In this context, algebraic structures, such as groups, play an
important role in defining and elucidating musical content. In this branch of transformational music
theory, known as neo-Riemannian theory, voice-leading between chords plays an important role. The
canonical example of this is the PLR group, originally introduced by the 19th-century music theorist
Hugo Riemann [8]. The transformations P , L, and R each represent the chord change between a
major and minor triad by moving one voice of each chord by one or two semitones. Moreover, these
transformations relate the important pairs of such triad relationships such as Parallel, Relative, or
Leading-Tone Exchange. These types of voice-leading involving small steps between voices are often
called parsimonious.

Transformations between voicings of triads are also considered in [4], where the authors consider
extensions of P , L and R to linear functions defined on all of Z3

12.

In addition to the algebraic action of the PLR group on the set of major and minor triads, a
geometric model called the Tonnetz is central to the study of neo-Riemannian transformations. For
a full description of the Tonnetz and operations in the PLR group as Dihedral group, we refer the
reader to [1] and [3].

In section 2 we recall some facts about the PLR group, in particular its structure as a semi-direct
product of groups. In section 3 we identify the structure of the parsimony group G for the constraint-
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based system of triads with inversions. In section 4 we describe the constraint-based system of seventh
chords, and in section 5 we propose some future work.

2 The PLR group as a semi-direct product of groups

The well-known PLR group is a group of transformations on the set of 24 consonant (major and
minor) triads. Here we consider triads as pitch-class sets, each consisting of three elements: root,
third, and fifth. We will label the sets M and m of major and minor triads as:

M = {M0,M1, . . . ,M11}, m = {m0,m1, . . . ,m11}

where M0 = C major, M1 = C] major ... M11 = B major, and m0 = C minor, m1 = C] minor ...
and m11 = B minor.

Next recall the three neo-Riemannian transformations:

– P (parallel) swaps major and minor triads by lowering the third (of major triads) or raising the
third (of minor triads) by one semitone

– L (leading tone) swaps major and minor triads by moving the root (of major triads) down a
semitone, or the fifth (of minor triads) up a semitone

– R (relative) swaps major and minor triads by moving the fifth (of major triads) up a whole tone,
or moving the root (of minor triads) down a whole tone

The set of all transformations on the set of major and minor triads which are generated from these
is called the PLR group, which we label here as:

GPLR = 〈P,L,R〉 .

We can also represent these transformations with indices as follows:

P : Mi 7→ mi, mi 7→Mi L: Mi 7→ mi+4, mi 7→Mi−4 R: Mi 7→ mi+9, mi 7→Mi−9

These transformations can be described by an ordered pair (s, t), where s takes the value σ if the
transformation swaps M and m, and 1 (the identity permutation) if the transformation does not
swap M and m. The value t is an integer vector (t,−t) which indicates the shift (or translation) t
(modulo twelve) on the index i of a major triad, and the shift −t (modulo 12) on the index j of a
minor triad.

For instance, we describe the three transformations as:

P : (σ, (0, 0)), L : (σ, (4,−4)), R : (σ, (9,−9))

Note: We differ slightly from Hooke’s notation in [5] where the symbols + and − are used instead
of 1 and σ to describe the mode of his Uniform Triadic Transformations, or UTT’s.

If S2 = {1, σ} is the symmetric group consisting of permutations of the two symbols M and m, and
Z12 is the group of integers modulo 12, then we can represent any element of GPLR as an ordered
pair (s, t) in the set product:

S2 × Z12 × Z12.

Finally, we quote here the well-known structure theorem for GPLR (see [5] for a proof):
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Theorem 1. The neo-Riemannian group GPLR is isomorphic to a semi-direct product S2 n Z12.

Note: Since the semi-direct product S2 n Z12 is isomorphic to the dihedral group of order 24 (see
for instance [3]), we also get the standard representation of the PLR group as a dihedral group of
order 24.

3 Constraint-based system of Triads

Triads can be obtained in root position by stacking major or minor thirds. This produces the four
triad types: major, minor, diminished and augmented. In music theory it is often preferred to think
in terms of pitch class sets, so the chord inversions of these four triads are taken to be equivalent to
their root position versions. In this paper, we consider each inversion as a separate entity. In order
to distinguish them, we identify each chord by its “successive-interval array”. This notion is first
defined by Chrisman in [2], in a more general context. For our purpose, we include only the semitone
gaps between successive notes, leaving out Chrisman’s inclusion of the semitone gap between the
highest pitch and one octave above the lowest pitch. In this paper we refer to this simplified array
of semitone gaps as si-type, for “successive interval type”.

We will refer to chords (in equal temperament) by integer tuples which indicate pitches relative to
some fixed starting value. For example, if middle C is represented as 0, then a piano with 88 keys is
represented by the values −39 (A0) to 48 (C8). The triple (0, 4, 7) then represents a C Major triad
in root position, with root middle C. We will always assume that such a triple (a, b, c) of integers
satisfies a < b < c, or equivalently that the pitch values are increasing from left to right.

The si-type [x, y] describes a triad (a, b, c) where x = b − a and y = c − b. Thus the si-type of the
C Major triad above, or any other Major triad in root position, is [4, 3]. The first inversion of this
triad then is represented by (4, 7, 12) and has si-type [3, 5]. The four types of triad, together with
their chord inversions, yield 10 different si-types, which are listed in the following table:

Table 1. si-types of triads

chord name (and symbol) Root 1st Inv 2nd Inv

Major triad (M) [4,3] [3,5] [5,4]

minor triad (m) [3,4] [4,5] [5,3]

diminished triad (o) [3,3] [3,6] [6,3]

augmented triad (+) [4,4] [4,4] [4,4]

Constraint-based definition of triad (based on si-type): We define a triad (a, b, c), given with
integers a < b < c, to be one with si-type [x, y] = [b− a, c− b] satisfying the following constraints:

3 ≤ x, y ≤ 6 and 6 ≤ x+ y ≤ 9.

It is easy to check that the above 10 si-types in the table are the only ones which satisfy these
constraints.
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Now consider parsimonious voice-leading transformations from one triad to another which are of the
simplest type: changing one of a, b, or c by only one semitone. (Note: we refer to the three voices of
the chord based on their position, not their function as root, third or fifth.)

The following table lists all such transformations which yield another chord in this collection. Here
we indicate the transformation with the notation a+ to mean that the note value a is replaced with
a+ 1:

a+ : (a, b, c)→ (a+ 1, b, c)

and a− to mean that a is replaced with a− 1:

a− : (a, b, c)→ (a− 1, b, c),

and so on for b and c.

Table 2. Parsimonious Transformations on si-types

symbol si-type a− a+ b− b+ c− c+

M [4,3] [3,3] [3,3] [3,4] [4,4]

M1 [3,5] [4,5] [4,4] [3,4] [3,6]

M2 [5,4] [4,4] [4,5] [6,3]

m [3,4] [4,4] [4,3] [3,3] [3,5]

m1 [4,5] [3,5] [3,6] [5,4] [4,4]

m2 [5,3] [6,3] [4,3] [4,4] [5,4]

o [3,3] [4,3] [3,4]

o1 [3,6] [4,5] [3,5]

o2 [6,3] [5,3] [5,4]

+ [4,4] [5,4] [4,5] [3,5] [5,3] [4,3] [4,5]

Triads modulo 12

We define the set T of triads (a, b, c) mod 12, according to their si-type and lowest pitch value a. We
take the value a = 0 to be the pitch C, etc. Since there are 10 si-types and 12 possible values for a,
we have 120 elements in T . It is important to note that these elements are not pitch class sets, since
we are still distinguishing between inversions as separate triads. We will use the common notations
but add superscripts and subscripts to indicate chord types and inversions. (Since lower case letters
are already being used for voices, we write Cm for a C minor triad instead of c.) For example, one
could list:

C = (0, 4, 7), A[1 = (0, 3, 8), F2 = (0, 5, 9), Cm = (0, 3, 7), Am1 = (0, 4, 9),

Fm2 = (0, 5, 8), Co = (0, 3, 6), Ao1 = (0, 3, 9), F ]o2 = (0, 6, 9), C+ = (0, 4, 8)

for chords occuring in the ten different si-types having starting pitch C, or a = 0.

Each of the si-types determines a subset of T , so we use the symbol or the si-type for subsets as
well. For example:

M = [4, 3] = {C = (0, 4, 7), C# = (1, 5, 8), D = (2, 6, 9), . . . , B = (11, 15, 18)}
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is the subset of 12 major triads, and

o1 = [3, 6] = {Ao1 = (0, 3, 9), B[o1 = (1, 4, 10), Bo1 = (2, 5, 11), . . . , A[o1 = (11, 14, 20)}

is the subset of 12 first inversion diminished triads, etc. (Note that we maintain the order a < b < c,
and that we consider (a, b, c) as representative of an equivalence class modulo 12. So we could use
A[o1 = (−1, 2, 8) but not (11, 2, 8) since it is an ordered triple but not a pitch-class set.)

Next, we define transformations between si-types, in particular the swaps of order two between si-
types which are induced by raising or lowering one voice a, b, or c, by one semitone. As permutations
on the set T , these are involutions since they swap all triads of one si-type with triads of another
si-type, and performing this swap twice results in the identity permutation. (Note the usual P and
L transformations are now factored into three swaps on si-types.) We indicate each transformation
with its corresponding pair of adjustments to one voice.

Table 3. Parsimonious Transformation labels

P0 : M ←→ m, b−, b+ P1 : M1 ←→ m1, a−, a+ P2 : M2 ←→ m2, c−, c+

L0 : M ←→ m2, a−, a+ L1 : M1 ←→ m, c−, c+ L2 : M2 ←→ m1, b−, b+

f0 : M ←→ o, a+, a− f1 : M1 ←→ o1, c+, c− f2 : M2 ←→ o2, b+, b−

g0 : m←→ o, c−, c+ g1 : m1 ←→ o1, b−, b+ g2 : m2 ←→ o2, a−, a+

α0 : M ←→ +, c+, c− α1 : M1 ←→ +, b+, b− α2 : M2 ←→ +, a+, a−

β0 : m←→ +, a−, a+ β1 : m1 ←→ +, c−, c+ β2 : m2 ←→ +, b−, b+

These transformations are pictured (as swaps of chord types) in the following diagram:

y = 6 o1

y = 5 M1 m1

y = 4 m + M2

y = 3 o M m2 o2

x = 3 x = 4 x = 5 x = 6

f1
g1

P1

L1
α1 β1

L2

g0
P0

β0

α0
β2

α2

P2
f2

f0 L0 g2

Fig. 1. Parsimonious Transformation Diagram

Note that in any small triangle of the following shape, if we start with any chord, then follow the
arrows clockwise, this results in an increase by one semitone to each of the voices, resulting in a
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transformation which affects this one chord type as:

(a, b, c) −→ (a+ 1, b+ 1, c+ 1).

o1

M1 m1

c+
b+

a+

Similarly, if we follow the arrows counterclockwise this results in:

(a, b, c) −→ (a− 1, b− 1, c− 1).

o1

M1 m1

f1
g1

P1

A few more observations on this diagram are in order before we state the theorem. First, the only
transformations which change the lower voice (a) of a triad are those which appear as horizontal
arrows, such as f0, L0, etc. The remaining transpositions leave a fixed and hence can be interpreted
as pure swaps of subsets. By this we mean that if the sets M and m are swapped by P0 and we index
the entries of each of these sets then the major and minor triads (in root position) are swapped at
the same index value, with no translation inside the two sets. Another type of transformation is the
pure translation on subsets, such as P0f0g0f0, which can be seen to shift m up by one semitone, and
shift M down by one semitone. If we specify an order to the si-types, or subsets, as:

(M,M1,M2,m,m1,m2, o, o1, o2,+)

then we can indicate these pure translations with the vector notation. For instance, P0f0g0f0 would
be represented as (−1, 0, 0, 1, 0, 0, 0, 0, 0, 0).

With the above notation, it is straight-forward to generate the following such pure translations:

(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0), (−1, 0, 1, 0, 0, 0, 0, 0, 0, 0), (−1, 0, 0, 1, 0, 0, 0, 0, 0, 0),

(−1, 0, 0, 0, 1, 0, 0, 0, 0, 0), (−1, 0, 0, 0, 0, 1, 0, 0, 0, 0), (−1, 0, 0, 0, 0, 0, 1, 0, 0, 0),

(−1, 0, 0, 0, 0, 0, 0, 1, 0, 0), (−1, 0, 0, 0, 0, 0, 0, 0, 1, 0), (−1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

This can be achieved by conjugation, or simply preceeding and following P0f0g0f0 by a series of
transpositions which are in reversed orders. For example, we obtain

(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0) = L1(P0f0g0f0)L1

and
(−1, 0, 1, 0, 0, 0, 0, 0, 0, 0) = L2g1f1L1(P0f0g0f0)L1f1g1L2.

Next, we define the parsimony group G to be the group of transformations generated by all of the
above defined transformations, acting as involutions on the set T of 120 triads modulo 12.

G = 〈P0, P1, P2, L0, L1, L2, f0, f1, f2, g0, g1, g2, α0, α1, α2, β0, β1, β2〉 .
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We will show that G is isomorphic to a semi-direct product of two groups:

G ∼= S10 n Z9
12.

The first of these is the full permutation group S10 on 10 symbols, in this case on the chord symbols
or si-types. The second factor in the semidirect product is Z9

12, obtained from the action of the group
Z12 on subsets of chords in one si-type. This factor can be seen as the subgroup Z of Z10

12 consisting

of all vectors t = (t1, . . . , t10) satisfying
∑10
i=1 ti = 0.

We need to specify the group operation in G which is given by the homomorphism

φ : S10 −→ Aut(Z)

with φ(s) = s(t), or in other words, the action of φ(s) on a vector t in Z is to simply permute the
vector components of t. We can represent any element of G as a pair (s, t) and then the product is
given as:

(s, t) · (s′, t′) = (ss′, t + s(t′)),

where
s(t′) = (t′s(1), t

′
s(2), . . . , t

′
s(10)).

To see this, let the vector of si-types be relabeled with superscripts so that

(M,M1,M2,m,m1,m2, o, o1, o2,+) = (T 1, T 2, . . . , T 10).

Each of the twelve chords inside each si-type can then be indicated with subscripts, so that C major
root position is now T 1

0 , and B augmented, or B+, is now T 10
11 . With this notation we can see that

(s, t)(T ij ) = T
s(i)
j+ti

.

This product then satisfies the properties:

Lemma 1. For any elements (s, t) and (s′, t′) in the parsimony group G, we have:

– (s, t) · (s′, t′) = (ss′, t + s(t′))

– (s, t)−1 = (s−1, s−1(−t))

– (s, t)(1, t′)(s, t)−1 = (1, s(t′))

Proof. The product (with first factor acting first) is verified by:

((s, t) · (s′, t′))(T ij ) = (s′, t′)(T
s(i)
j+ti

) = T
s′(s(i))
j+ti+t′s(i)

= T
(ss′)(i)
j+ti+s(t′i)

,

and the form of the inverse follows directly. The last property is verified as:

(s, t)(1, t′)(s, t)−1 = (s, t)(1, t′)(s−1, s−1(−t)) = (s, t)(s−1, t′ + s−1(−t))

= (1, t + s(t′ + s−1(−t))) = (1, s(t′)).

�

From the last property of the Lemma we obtain:
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Corollary 1. The group Z of pure translations is a normal subgroup of G.

Next, we recall that a group G is a semi-direct product, written K nφ H if the following hold:

– K and H are subgroups of G

– H is normal in G

– KH = G

– φ : K −→ Aut(H) is a homomorphism, k 7→ φk

– The product in G is (k, h)(k′, h′) = (kk′, hφk(h′))

Theorem 2. The parsimony group G defined above is isomorphic to S10 n Z9
12.

Proof. The proof follows the outline of the proof of Theorem 1 in [1]. There are two steps: 1) We
show that the permutation part of this group contains all transpositions on the sets of triad types,
and 2) We show that the vectors of integers modulo 12 contain all elements of the type

(t1, t2, . . . , t10)

satisfying
∑10
i=1 ti = 0, which shows that the subgroup of pure translations Z is isomorphic to Z9

12.
The first part follows from figure 1 where we can identify a sequence of transpositions which generate
all of S10. In fact, we can generate all transpositions, or swaps of two si-types, where we avoid any
translations. This is done simply by following arrows in the diagram from one si-type to another
but avoiding the horizontal arrows. For example, the swap between type o (diminished triad in root
position) and type m2 (minor triad second inversion) can be obtained as:

g0L1α1β2α1L1g0.

Since the transpositions generate the full symmetric group, the first part is done. It is evident that
the generators of G satisfy the property that the translation vector has sum of its components equal
to zero. The second part follows by noting that we can express any element of the specified type as
a sum of the elements generated above, in particular:

(t1, t2, . . . , t10) = t2(−1, 1, 0, 0, 0, 0, 0, 0, 0, 0) + · · ·+ t10(−1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

where the first coordinate is automatically correct since t1 = −(t2 + · · ·+ t10). �

We can immediately identify the PLR group as a subgroup of the parsimony group G. In particular,
since each operation now factors as a product of three transpositions, we have:

GPLR ∼= 〈P0P1P2, L0L1L2, R0R1R2〉 .

4 Constraint-based System of Seventh Chords

Extensions of the PLR group to seventh chords are explored in several recent papers. In [6] Kerkez
defines a PS-group, isomorphic to GPLR, which acts on the major and minor seventh chords. In [1]
Cannas, Antonini, and Pernazza, define a group called PLRQ which generalizes the PLR group
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to five types of seventh chords: dominant, minor, half-diminished, major, and diminished, and they
show that this group is isomorphic to the semi-direct product S5 nZ4

12. Continuing in this vein, we
now extend these results to a larger constraint-based system of seventh chords.

A typical definition of seventh chord might be: “A four-note chord obtained by stacking thirds based
on a major or minor scale.” One should also add that such a chord can be inverted in the usual way,
giving three other equivalent four-note chords. If we are interested primarily in pitch classes, then
of course these all represent the same pitch-class set. In this paper we consider these as individual
chords in their own right, and note that their structure gives way to a very simple constraint-based
description of seventh chords.

If seventh chords are assumed to come from the major or minor scale construction alluded to above,
then we have the following seven types, which we call the classical types of seventh chords.

Dominant seventh (7), minor seventh (m7), half-diminished seventh (∅7), Major seventh (M7),
minor-Major seventh (mM7), augmented Major seventh (+M7), diminished seventh (o7).

As we did for triads, recalling Chrisman’s “successive-interval array” in [2], we introduce the “successive-
interval type”, or si-type: [x, y, z] for a seventh chord. In equal temperament, we can represent a
four-note chord by an integer vector of values (a, b, c, d). Here we will assume that the note values
are listed in increasing order a < b < c < d.

We define the successive-interval type, or si-type: [x, y, z] for a seventh chord (a, b, c, d) to be:

[x, y, z] = [b− a, c− b, d− c],

or simply the numbers of semitones separating the notes of the chord, from left to right.

For example, if we use 0 to represent middle C, then the chord (0, 4, 7, 10) would be C Dominant
seventh chord in root position. The si-type for this chord is then [4, 3, 3]. The first inversion of this
chord is (4, 7, 10, 12), with si-type [3, 3, 2].

Note: The si-type describes a chord inversion, but is not an invariant of the pitch class set.

It is easy to see that there are 25 si-types associated to these classical seventh chords with all of
their inversions. The only chord whose inversions do not generate new si-types is the full diminished
chord. It is also easy to check that the semitone separation variables x, y, z exhibited in these classical
seventh chord types always assume values 1, 2, 3 or 4, and that any such chord (a, b, c, d) with one of
these types must have total spread x+ y+ z to be at least 8 semitones (a minor sixth) and at most
11 semitones (a Major seventh). Next, we take the above description of si-types and turn it into a
definition of seventh chord:

Constraint-based definition of seventh chord (based on si-type): We define a seventh chord
(a, b, c, d), given with integers a < b < c < d, to be one with si-type [x, y, z] = [b − a, c − b, d − c]
satisfying the following constraints:

1 ≤ x, y, z ≤ 4 and 8 ≤ x+ y + z ≤ 11.

Practiclly speaking, we are defining a seventh chord to be one which can be played on the piano by
simply choosing four notes in such a way that: 1) any two adjacent notes are separated by a major
third, a minor third, a whole step, or a half step, and 2) the spread from the first to the last notes
is at least a minor sixth, and at most a major seventh.
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An obvious question to ask is whether the above constraints are a description of precisely the above
collection of 25 si-types, or have we introduced something new? The answer is that indeed there are
precisely two new chords in this family: the flat 5 seventh (7[5) and the sharp 5 seventh (7]5).

The si-types of the classical seventh chords as well as these two additional chords are listed in the
following table:

Table 4. si-types of constraint-based system of seventh chords

chord name (and symbol) Root 1st Inv 2nd Inv 3rd Inv

Dominant seventh (7) [4,3,3] [3,3,2] [3,2,4] [2,4,3]

minor seventh (m7) [3,4,3] [4,3,2] [3,2,3] [2,3,4]

half-diminished seventh (∅7) [3,3,4] [3,4,2] [4,2,3] [2,3,3]

Major seventh (M7) [4,3,4] [3,4,1] [4,1,4] [1,4,3]

minor-Major seventh (mM7) [3,4,4] [4,4,1] [4,1,3] [1,3,4]

augmented Major seventh (+M7) [4,4,3] [4,3,1] [3,1,4] [1,4,4]

diminished seventh (o7) [3,3,3] [3,3,3] [3,3,3] [3,3,3]

flat 5 seventh (7[5) [4,2,4] [2,4,2] [4,2,4] [2,4,2]

sharp 5 seventh (7]5) [4,4,2] [4,2,2] [2,2,4] [2,4,4]

Since the 7[5 chord only generates two si-types, while the 7]5 generates four types, we have a total
of 31 si-types for this constraint-based system of seventh chords. We label the set of these 31 si-types
S7:

S7 = {[x, y, z] : 1 ≤ x, y, z ≤ 4, 8 ≤ x+ y + z ≤ 11}.
Let’s call the set of integer vectors (a, b, c, d) representing a seventh chord as above C7, which is a
subset of Z4:

C7 = {(a, b, c, d) : a < b < c < d, x = b− a, y = c− b, z = d− c, 1 ≤ x, y, z ≤ 4, 8 ≤ x+ y + z ≤ 11}.

Finally, we consider C7 modulo translation by the group Z12. By this we mean that two chords
(a, b, c, d) and (a′, b′, c′, d′) are considered equivalent if they have the same si-type [x, y, z] and a ≡ a′
(mod 12). We can represent each of these equivalence classes by a chord (a, b, c, d) with 0 ≤ a ≤ 11.
Denote the equivalence class of a chord (a, b, c, d) by simply (a, b, c, d)12. Then we define:

X7 = {(a, b, c, d)12 : (a, b, c, d) ∈ C7}.

The size of X7 is 31 · 12 = 372.

We define the parsimony group G7 for this set X7 of seventh chords to be the group generated by all
parsimonious transformations which raise or lower one of the four voices, a,b,c or d, of the seventh
chord by one semitone, but only allowing such transformations in the case where the resulting chord
is in the same set X7. Just as with the parsimony group G for triads, each such transformation can
be seen as a swap of two s-types, with a possible shift modulo 12.
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5 Future work

We propose to investigate the following question in a continuation of this work:

Is the parsimony group G7 defined above isomorphic to S31 n Z30
12?

We can define an infinite graph on the constraint-based system of seventh chords with edges which
exist if there is a parsimonious voice-leading transformation between the two chords. We have de-
veloped software to play random walks on this graph, and propose to use this type of system for
generative music.

X7 breaks up naturally into some subsets which can be described as stabilizers of permutation
actions on the si-type. Such subsets are:

X1 = {7,m7,∅7}, X2 = {M7,mM7,+M7}, X3 = {o7}, and X4 = {7[5, 7]5}.

We propose to study further these subsets, and the corresponding subgroups of the parsimony group
G7, and their significance for voice-leading and generative music.
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