Hamilton Cycle Splines			4-note chords are played with			3 and 7 up an octave and $\mathrm{A} 110=0$			y factor					
					(next)		Anchor Note		(melodic contour)		Transform		Folder	flute
Group	Bar	Chord	a, b, c, d	Type	Transition	pitch shift	cello	flute	cello	flute	cello	flute	cello	
1	1	A+M7	A,C\#,E\#,G\#	[4,4,3]	a+	0,8,16,23	A110	Ab415	3	3	prime	prime	cello189/mel-s3	fluteA440/mel-s3
	2	Bbm7	Bb,Db,F,Ab	[3,4,3]	d-	1,8,16,23	$\mathrm{Bb}(+1)$	Ab415	3	3	invers	invers	cello189/mel-s3	fluteA440/mel-s3
	3	G@7_1	Bb,Db,F,G	[3,4,2]	a-	1,8,16,22	$\mathrm{Bb}(+1)$	G (-2)	3	3	retro	retro	cello189/mel-s3	fluteA440/mel-s3
	4	A7\#5	A,C\#,E\#,G	[4,4,2]	d-	0,8,16,22	A110	G	3	3	ret-inv	ret-inv	cello189/mel-s3	fluteA440/mel-s3
2	5	F\#mM7_1	A,C\#,E\#,F\#	[4,4,1]	a+	0,8,16,21	C\# (+4)	F\# (-3)	3	3	prime	prime	cello189/mel-s3	fluteA440/mel-s3
	6	F\#M7_1	A\#,C\#,E\#,F\#	[3,4,1]	b+	1,8,16,21	C\#	F\#	3	3	invers	invers	cello189/mel-s3	fluteA440/mel-s3
	7	F\#+M7_1	A\#,D,E\#,F\#	[4,3,1]	c-	1,8,17,21	D (+5)	F\#	3	3	retro	retro	cello189/mel-s3	fluteA440/mel-s3
	8	F\#7\#5_1	A\#,D,E,F\#	[4,2,2]	c-	1,7,17,21	D	F\#	3	3	ret-inv	ret-inv	cello189/mel-s3	fluteA440/mel-s3
3	9	EbmM7_2	Bb,D,Eb,Gb	[4,1,3]	d+	1,6,17,21	Eb (+6)	F\#	3	3	prime	prime	cello189/mel-s3	fluteA440/mel-s3
	10	EbM7_2	Bb,D,Eb,G	[4, 1,4]	a+	1,6,17,22	Eb	G (-2)	3	3	invers	invers	cello189/mel-s3	fluteA440/mel-s3
	11	Eb+M7_2	B,D,Eb,G	[3,1,4]	b-	2,6,17,22	Eb	G	3	3	retro	retro	cello189/mel-s3	fluteA440/mel-s3
	12	Eb7\#5_2	B,Db,Eb,G	[2,2,4]	b-	2,6,16,22	Eb	G	3	3	ret-inv	ret-inv	cello189/mel-s3	fluteA440/mel-s3
4	13	CmM7_3	B,C,Eb,G	[1,3,4]	a-	2,6,15,22	C (+3)	Eb (-6)	2.5	2.5	prime	prime	cello189/mel-s2.5	fluteA440/mel-s2.5
	14	Cm7_3	Bb,C,Eb,G	[2,3,4]	d-	1,6,15,22	C	Eb	2.5	2.5	invers	invers	cello189/mel-s2.5	fluteA440/mel-s2.5
	15	C@7_3	Bb,C,Eb,Gb	[2,3,3]	a-	1,6,15,21	C	Eb	2.5	2.5	retro	retro	cello189/mel-s2.5	fluteA440/mel-s2.5
	16	Ao7	A,C,Eb,Gb	[3,3,3]	a-	0,6,15,21	C	Eb	2.5	2.5	ret-inv	ret-inv	cello189/mel-s2.5	fluteA440/mel-s2.5
5	17	Ab7	$\mathrm{Ab}, \mathrm{C}, \mathrm{Eb}, \mathrm{Gb}$	[4,3,3]	d+	-1,6,15,21	$\mathrm{Ab}(-1)$	C (-9)	2	2	prime	prime	cello189/mel-s2.0	fluteA440/mel-s2.0
	18	AbM7	Ab,C,Eb,G	[4,3,4]	a+	-1,6,15,22	Ab	C	2	2	invers	invers	cello189/mel-s2.0	fluteA440/mel-s2.0
	19	A@7	A,C,Eb,G	[3,3,4]	b+	0,6,15,22	A (0)	C	2	2	retro	retro	cello189/mel-s2.0	fluteA440/mel-s2.0
	20	A7b5	A,C\#,Eb,G	[4,2,4]	a+	0,6,16,22	A	C\# (-8)	2	2	ret-inv	ret-inv	cello189/mel-s2.0	fluteA440/mel-s2.0
6	21	Eb7_2	Bb,Db,Eb,G	[3,2,4]	d-	1,6,16,22	C\# (+4)	Eb (-6)	1.5	1.5	prime	prime	cello189/mel-s1.5	fluteA440/mel-s1.5
	22	Ebm7_2	Bb,Db,Eb,Gb	[3,2,3]	a-	1,6,16,21	C\#	Eb	1.5	1.5	invers	invers	cello189/mel-s1.5	fluteA440/mel-s1.5
	23	Eb@7_2	A,Db,Eb,Gb	[4,2,3]	c+	0,6,16,21	C\#	Eb	1.5	1.5	retro	retro	cello189/mel-s1.5	fluteA440/mel-s1.5
	24	F\#m7_1	A,C\#,E,F\#	[4,3,2]	a+	0,7,16,21	C\#	E (-5)	1.5	1.5	ret-inv	ret-inv	cello189/mel-s1.5	fluteA440/mel-s1.5
7	25	F\#7_1	A\#,C\#,E,F\#	[3,3,2]	b-	1,7,16,21	C\# (+4)	E	1	1	prime	prime	cello189/mel-s1.0	fluteA440/mel-s1.0
	26	F\#7b5_1	A\#,C,E,F\#	[2,4,2]	d+	1,7,15,21	C (+3)	E	1	1	invers	invers	cello189/mel-s1.0	fluteA440/mel-s1.0
	27	C7_3	A\#,C,E,G	[2,4,3]	a+	1,7,15,22	C	E	1	1	retro	retro	cello189/mel-s1.0	fluteA440/mel-s1.0
	28	CM7_3	B,C,E,G	[1,4,3]	d+	2,7,15,22	C	E	1	1	ret-inv	ret-inv	cello189/mel-s1.0	fluteA440/mel-s1.0
8	29	C+M7_3	B,C,E,G\#	[1,4,4]	a-	2,7,15,23	$B(+2)$	E (-5)	0.75	0.75	prime	prime	cello189/mel-s0.75	fluteA440/mel-s0.75
	30	C7\#5_3	Bb,C,E,G\#	[2,4,4]	a-	1,7,15,23	$\mathrm{Bb}(+1)$	E	0.75	0.75	invers	invers	cello189/mel-s0.75	fluteA440/mel-s0.75
	31	AmM7	A,C,E,G\#	[3,4,4]	a-	0,7,15,23	A (0)	E	0.75	0.75	retro	retro	cello189/mel-s0.75	fluteA440/mel-s0.75
	32	Ab+M	Ab, C,E,Ab	[4,4,4]	c+	-1,7,15,23	$\mathrm{Ab}(-1)$	E	0.75	0.75	ret-inv	ret-inv	cello189/mel-s0.75	fluteA440/mel-s0.75

References: (at https://azrael.digipen.edu/research/)

[1] Constraint-Based Systems of Triads and Seventh Chords, and Parsimonious Voice-Leading, MCM 2019
[2] Spline modeling of audio signals and cycle interpolation, MCM2022
[3] Melodic Contour Generation with Spline Models of Cycles, MCM2024
[4] TorchAudioSplines (github) https://github.com/mattjklassen/TorchAudioSplines

Notes on graphs of melodic contours:

1 The following two plots are outputs from matplot in python. Each plot represents one cycle from an audio sample of one note played on cello or flute
2 For discussion of cycles based on zero crossings see [2] and for their use as melodic contours see [3].
3 These two contours are the only ones used in the composition Hamilton Cycle Splines.
4 The y factor scales the y axis before determining pitches with fundamental frequency $\mathrm{fO}=\mathrm{FO}{ }^{*} 2^{\wedge} \mathrm{y}$, with some reference or starting frequency F0
5 The cent value of the interval from F0 to F0 * $2^{\wedge} y$ is then simply 1200 *y
6 Since the cello max value is about 0.3 we get with scale factor 3 the max of about 0.9 , or cent value 1200 * $0.9=1080$, a slightly flat major seventh
7 Since the flute max value is about 0.275 we get with scale factor 3 the max of about 0.825 , or cent value 1200 * $0.825=990$, a slightly flat minor seventh
8 More precise cent values for the melodic fragments with y scale value 3 are given below after each plot.

Notes on video of Hamilton Cycle Splines playing back through Reaper:

1 The tracks in Reaper contain short wav file segments, with "cello-like" on top, chords in the middle, and "flute-like" at the bottom.
2 Bar numbers are at the top in small red dots, and chord symbols appear as labels at the top of each bar.
3 A " +1 " or a " -1 " appears in front of any voice which is about to change by one semitone.
4 In the first 3 groups (12 bars) there is no change to the pitch spread in the melodic parts, since all have y factor 3.
5 In the first 3 groups the melodic parts are shifted about, or transposed, which can be seen by noting the anchor notes.
6 In bar 13 the melodic fragments are slightly contracted in spread, with y factor 2.5.
7 Starting with bar 13, or group 4, each successive group has contracted pitch spread

