Sonification of Quantum Algorithms with
Spline Models of Timbre, Melody, and Rhythm

Matt Klassen!*

! DigiPen Institute of Technology
Redmond, Washington, USA

mklassen@digipen.edu

Abstract. In this paper we describe methods for mapping
the information contained in a spline model of one cycle of
an audio signal to the quantum information setting. We use
this mapping to describe methods of sonification of quan-
tum algorithms which use spline models to describe and
generate timbre, melody, and rhythm. We show how a mu-
sical state vector given by n B-spline coefficients, which
represent one cycle of a waveform, can produce these three
musical elements simultaneously. We present two modes
of correspondence between quantum and musical states.
The first mode is derived from proposed signal process-
ing of quantum audio, such as QPAM (Quantum Proba-
bility Amplitude Modulation), and the second mode works
with superposition states achievable through quantum al-
gorithms. Musical states are initialized using approximate
timbres derived from instrument samples or synthesized
timbres. Melodic contours are derived from spline mod-
els of these timbres, using continuous pitch and duration
spaces. Musical examples are discussed, and larger com-
positional works are currently in production.

1 Overview

Musical elements such as timbre, melody, and rhythm can
describe the state of a piece of music at various points in
time. A listener can experience these elements and a mu-
sic theorist can describe them and their interrelationships.
Further, an audio engineer or scientist can analyze how
these elements occur precisely in time through sampling
and recording. All of these activities are classical, occuring
in the domain of human experience and classical physics.
Only recently are researchers now imagining these things
in the domain of quantum computation.

In this paper we investigate the question: How
might these musical elements evolve in time if they were
reflecting the types of change of state which occur in the
quantum domain?

In order to explore this question, we create some
embeddings of timbre, melody, and rhythm in the space
of quantum computation. A key starting point is the no-
tion of a cycle, or approximately repeating segment of a
waveform. In the digital audio domain this can be de-
scribed by a piecewise linear graph over some time interval
[a, b], with positive slope at the two endpoints, and length
L = b — a. Further, the waveform should have approx-
imate fundamental frequency fo = 1/L in some region
containing the interval [a,b]. We use models of such cy-
cles with cubic B-splines allowing for uniform description

*Supported by DigiPen.

by sets of B-spline coefficients. Timbre of one tone can
be nicely controlled by a few such cycles, with methods to
interpolate between them. See [1] for more details on these
models.

Since the cycles are represented by vectors of real
numbers (of B-spline coefficients) we can devise methods
to embed these vectors into the quantum setting. Methods
of doing this already exist for audio samples and so we bor-
row some of these techniques (such as QPAM in [2]) to ar-
rive at embeddings of this representation of timbre. These
methods form the first mode of interaction between musi-
cal states (such as timbre and melody) and quantum states
(such as multi-qubit states). In this mode we embed vectors
as probabilities of basis states by doing quantum measure-
ments. This allows for the possibility of implementation,
and for instance of running actual quantum circuits which
can be used to produce statistical output. From this output
we could extract versions of the vectors that are used for
modeling the musical state.

The second mode works with quantum states in
superposition and could be implemented through simula-
tion of quantum algorithms on classical computers. In this
mode we are more interested in the quantum states from an
abstract perspective, but there is still the goal of understan-
ing how such musical elements can evolve in the context
of quantum algorithms.

In the following sections we summarize the spline
models of cycles, then describe some methods for encod-
ing these cycles as qubit registers. These are followed
by two sections on modeling of timbre and melody using
splines. Finally, we give a short example of sonification
using a simple quantum circuit.

2 Spline models of cycles

Previous use of splines in audio synthesis and f; model en-
velopes, can be found in [3] and [4] respectively. We use
the techniques described in [1] to model audio segments,
having some discernable but approximate fundamental fre-
quency fo, using splines. One can choose a set of rep-
resentative cycles, or segments which are approximately
repeating, and use interpolation to fill in the intermediate
cycles. This works well for instrument samples, where it
is possible to construct accurate models of audio by using
data from a small number of cycles. The local timbre of a
waveform is preserved if the number of points in one cy-
cle matched by the spline (called interpolation points) is
approximately one third of the number of samples in the
cycle.

Such spline models of audio are:

- low resolution models, can be used to reconstruct an
audio signal from a smaller set of data

- time domain models, differing from typical compression
models which work with frequency bands.

- locally computable models, using de Boor algorithm (see
de Boor’s book [5])

An important point is that cycles are modeled
over time intervals [a,b] with a and b real numbers, not
restricted to samples. So exact values of fundamental fre-
quency fo correspond to exact cycle lengths 1/ f;. Since
we do compute with sampled waveforms, it will be as-
sumed that sampling can be treated as independent of f
and cycle length. The spline function used to model a cy-
cle can be specified to match certain interpolation points
coming from a real waveform. In this case we treat the
sampled waveform as a continuous function by using lin-
ear interpolation between sample values, so that selecting
say n evenly spaced points along a cycle can also be inde-
pendent of the placement of samples. Once a spline model
of a cycle is determined, as a set of B-spline coefficients,
it can then be used on a cycle of any length, appropriately
resampled.

Another important point is that even though cy-
cles are initially thought of as representing waveforms with
some constant f, this changes when we do cycle interpo-
lation, or when we vary pitch as in glissandos. Briefly,
the method of cycle interpolation is to take a sequence
of key cycles which capture the waveform at some impor-
tant points in time (much like key frames for animation).
Then one can interpolate between vectors of B-spline co-
efficients, allowing the computation of intermediate cycle
representations (much like computing animation frames).
Whether we are modeling recorded sounds or synthesizing
new sounds, or a mixture of these two, the cycle model-
ing and cycle interpolation methods thrive in the context
of waveforms with varying pitch and timbre.

We define the basic model to be the sequence of
zero crossings z;, j = 0,...,p and the sequence of spline
functions f;(t) on the interval [z;, z;4+1]. We also refer to
each of these splines and their associated data as one “cy-
cle” Cj, so that the basic model is the sequence of cycles
Cjfor j = 0,...,p — 1. Further, let the B-spline coeffi-
cients for cycle C; be cg, i=0,...,n—1.

The B-spline functions can be defined with di-
vided differences, and knot sequence (non-decreasing se-
quence of real numbers) {to,...,tx} as:

B (t) = (=) (tipap1—ti)[tis tiga, - -
or using the (de Boor-Cox) recursion formula as
t—t;

tivar)(t—z)

tita+r1 —t B

B (t) =
40 titd+1 — tit1

B+ i)

i+1

We compute values of the B-spline functions, or of the
interpolating spline f, with nested linear interpolation,
known as the de Boor algorithm:

. (init:)Setcg:cifori:(),...7N—d—1.

e Fort € [tg,ty—q) set J to be the index so that
te [tj,tJJrl).

e (Stage p:) Forp = 1,...,d, fori = J —d +
p,...,J: set

t—1; 1 bivd—(p—1) —C ,_
i e e

titd—(p—1) — ti ' titd—(p—1) —ti '

« f(t) =c3.

Note: to solve for the coefficients c¢;, i =
0,...,n — 1, we set up the interpolation problem as a lin-
ear system by requiring that f agrees with the audio output
data at each of the n input values. Since the input val-
ues are evenly distributed, we are guaranteed a unique so-
lution, according to the Schoenberg-Whitney Theorem on
B-spline interpolation (see [5]).

Also note: we may normalize a set of B-spline
coefficients for various purposes, in order to focus on the
shape of a cycle rather than its peak amplitude, for exam-
ple. When constructing tones which can represent instru-
ment samples of short duration (say several seconds) it is
often desireable to have an envelope which is independent
of timbre. This can be easily achieved by choosing a set of
key cycles and a corresponding set of amplitude multipli-
ers. Once the key cycles are scaled in this way, an envelope
is naturally computed by the cycle interpolation method.

In Quantum Computing it is necessary to use the
Euclidean Normalization, which specifies that the sum of
the squares of the complex norms of coefficients for the
computational basis states is 1. In the case of B-spline
coefficients, we adopt this normalization for simulation in
the example of the last section.

3 From Cycles to Qubits

Our goal is to represent cycles as vectors of B-spline co-
efficients with qubit registers. Once these are defined, one
can then proceed to compute samples as arrays of fixed
point integer representations or as floats. The method of
cycle interpolation allows for the generation of arrays on
the order of several seconds representing musical notes.
Additionally, the same cycles can be used to generate
melodic contours and pitch sequences.

As a first method of mapping models of cycles
to qubits, we use Quantum Probability Amplitude Mod-
ulation (QPAM) which is described in [2]. This method
is described for audio signal values, assumed to be in the
interval [—1,1]. A multi-qubit register is used to encode
time values as its possible states, resembling an array but
in quantum superposition. Since we can also normalize B-
spline coefficients to satisfy this restriction, we can follow
the same procedure. However, in this case we do not ex-
plicitly specify time values for samples a;. Instead, we can
think of ¢ as specifying an index into the array of B-spline
coefficients. These c; are in sequence and indeed this se-
quence does follow the flow of time. The values ¢; can
in this way be thought of as a “down-sampled” version of

the audio which forms the signal graph over the interval
defining one cycle. A direct connection to sample values
can then be made from the representation through the de
Boor algorithm which can be used to compute samples via
nested linear interpolation of the B-spline coefficients.

The encoding of B-spline coefficients c¢; then fol-
lows these basic transoformations: first map ¢; to ¢ =
(¢; + 1)/2 (so that these values are each in the interval
[0,1]), then normalize the sum to 1, so ¢ = ¢}/c where ¢
is the sum of all the ¢;. Then finally we put c; = \/c;. In
a multiple qubit representation we have the assignment of
the probability |a;|? to the computational basis element |).
This procedure then enables the encoding of cycle mod-
els given as vectors of n B-spline coefficients c into some
quantum register of size n.

QPAM retrieval can also be applied to extract
such a set of B-spline coefficients from the quantum do-
main using measurement statistics. As pointed out in [2]
this process may require the preparation of many states in
order to form a histogram of measurements. This map-
ping allows for the translation of data which specifies cycle
models back and forth between the classical and quantum
contexts. Once probability amplitudes are determined ex-
perimentally through measurements as p; we can reverse
the above transforms to get

ci = 2g9pi — 1,

where ¢ is a normalization coefficient. As indicated by
the authors in [2], g can be chosen somewhat arbitrarily to
determine the amplitudes of the c;, which are used to gen-
erate an audio signal. In their paper, ¢; = a; which are
the raw audio sample values. In the present work, the c;
are B-spline coefficients which may be used to generate
an audio signal through a process of cycle interpolation.
The size of these coefficents then determines the size of
the audio samples generated. The choice of g is thus one
step removed, but is still important in determining the am-
plitude range of the audio signal. An important fact here is
that the B-spline basis functions are locally a partition of
unity, so ¢; € [—1, 1] implies that the signal values gener-
ated will also be in [—1, 1]. Further, one can use envelopes
to control the shape of the audio signal output in the case
that cycles are used to mimic instrument samples.

Another method, also described in [2], is Single
Qubit Probability Amplitude Modulation (SQPAM) which
encodes the values ¢; into ceiling(log n) + 1 qubits in-
stead of using raw probability amplitudes. There is also
a dedicated qubit |v;) used for the encoding of values as
coefficients of basis kets, by mapping

¢i — |i) = cos6; |0) +sinb; 1),

where
1 Ja+1

5
The preparation of this encoding uses only one qubit per
coefficient ¢; as described above, but n qubits for the time.
Just as with QPAM, we consider those as indices but not as

0; = sin™

times. Also as with QPAM, we can do the reconstruction
of the set of B-spline coefficients using

= 2]7%(1>) -1
"o (0) (1)

with

0)) = cos?0;, p-,(|1)) = sin?6;.

Pry; (

These methods are called “coefficient-based rep-
resentations”. It is also possible to use “state-based repre-
sentations” which store the values of B-spline coefficients
more directly as multi-qubit states in superposition.

In all of these cases we extract information from
the quantum setting which is used to define vectors of B-
spline coefficients, which can be used to model cycles of
some waveform. Typically such cycles can be designated
as key cycles for the purpose of generation of full audio
waveforms. For example, one might generate a waveform
of length 1 second with 5 cycles each on the order of
several milliseconds. This process of cycle interpolation
yields a waveform with smooth evolution of cycle shape,
mimicking real waveforms of instrument samples. Even
though the cycle lengths can be taken to be uniform, and
we speak of fo = 1/L, the cycle shapes are not periodic.

The above describes the reconstruction of a full
set of cycles as vectors of B-spline coefficients. In order
to convert these into actual samples we use the de Boor
algorithm to evaulate B-spline functions with nested linear
interpolation.

4 Timbre modeling

With these methods of encoding B-spline coefficients, we
can set up a layered approach to musical states which de-
termine timbre, pitch, and duration. These musical ele-
ments can be determined at the sample level of audio, or at
a higher level of musical time. For example, timbre can be
determined by the evolution of a waveform from one cycle
to another. To be more precise, we can generate a one sec-
ond audio segment with fundamental frequency fy = 220
Hz, by setting initial and final cycles of length 1/220 sec
each with two sets of B-spline coefficients. These may be
extracted from recorded audio samples, for instance, in or-
der to mimic an instrumental timbre. If the sample rate is
44100 samples per second, then each cycle will have about
200 samples. A good B-spline model for each cycle can be
given with 32 B-spline coefficients. The remaining sam-
ples can be computed by cycle interpolation, for example
linear interpolation between corresponding coefficients of
the two cycles, followed by waveform computation using
the de Boor algorithm.

5 Melodic contour modeling

The method of melodic contour modeling using B-spline
curves is to start with a spline function plot over the inter-
val [0, 1] with function values in the interval [—1, 1]. (This
also can be thought of as a standard normalized model for
a cycle.) Such a spline can be plotted with any set of

basis coefficients for some B-spline basis on the interval
[0,1]. The number of B-spline coefficients n is some-
what independent of this construction and generation of
melodic contours. We interpret the x-axis of such a plot
as time and the y-axis as pitch on a logarithmic scale, so
that one octave is spanned by the interval 0 < y < 1. We
equate pitch with fundamental frequency, and also assume
that some chosen pitch represents y = 0. There are many
ways to proceed from this point to generating a sequence
of pitches, and we mention just one of these here. A sim-
ple method is to compute the stationary points on the spline
(where the first derivative is zero) and to use these points
to break up the x-axis into subintervals. Suppose that the
stationary points occur at points (z;,y;), fori =1,...,m.
One can then generate the melody with initial pitch y = 0
lasting for time interval [0, x;] followed by pitch with fy
given by 2! for time interval [z, x2], and so on, finish-
ing with pitch given by 2¥™ on the last interval [z,,, 1].
All time interval lengths can be scaled according to com-
positional preference. In Figure 1 there is an example of
such a spline, with line segments indicating constant pitch,
with length indicating note duration. For more details on
melodic contour modeling we refer to [6].

6 Sonification

We have set up some correspondences between musical el-
ements, which we have collectively referred to as “musical
state”, and numerically derived vectors which can be em-
bedded in quantum states. Although the digital signal pro-
cessing of audio in quantum states is not fully developed,
we produce here some examples inspired by these corre-
spondences. The first step is to choose a simple B-spline
representation with 8 coefficients, which we call c:

c=(0.4,-0.2,0.2,0.6,—0.4,0.4,0.2, —0.2)

As mentioned earlier, we have chosen this vector to have
the Euclidean normalization:

cg+cf+c§+c§+ci+c§+cg+c$: 1.
We also refer to the cubic B-spline graph generated with
these coefficients as ¢ (for contour). As an exercise in soni-

fication, we begin with a basic quantum circuit (taken from
[7] page 118).

—H

D
U

The quantum circuit above takes as input any linear com-
bination of the computational basis states:

{|000) , [001) , 1010} ,]011) , [100) , [101) , [110) , [111)}

The unitary 8 x 8 matrix that implements this circuit is
show here as A, which can also be seen (by taking succes-

Figure 1: basic contour ¢

Figure 2: Ac

sive powers) to have multiplicative order 8:

10 1 0 00 0 0
01 0 1 00 0 0

01 0 -1 00 0 0
4Lt to-1 0000 o0
2]l 00 0 0o 10 1 0
00 0 0 01 0 1

00 0 0 01 0 -1

00 0 0 1 0 -1 0

In figures 2-8 we show the evolution of this contour by
iteration of the unitary matrix A.

This sequence of contours can be used to describe
timbres and melodies which evolve on time scales of mil-
liseconds and seconds respectively. Abstractly, we can
think of these musical states as influenced, at least con-
ceptually, by the quantum circuit. (Accompanying music
composition is forth-coming.)

Our implementation and generation of musical
fragments, such as tones and melody, is currently using
python and PyTorch. These scripts generate audio sam-
ples directly from spline models and accompanying data
descriptions to guide numerical choices. In most cases
of tone generation, instrument samples are used to extract
cycles. We look forward making the connection between
this set of tools and quantum computing libraries such as
Qiskit.

Figure 3: A2%c

Figure 4: A3c

Figure 5: A‘c

Figure 6: ASc

Figure 7: ASc

Figure 8: A7c

7 Conclusions and Future Work

We have shown that there are some natural ways to set
up correspondences between numerical representations of
musical elements such as timbre and melody, based on the
notions of cycles and melodic contours, and qubit registers
in the quantum domain. We propose to study this corre-
spondence further, and in particular to begin to map out
the digital signal processing that is necessary to make these
techniques part of a broader sonification of quantum cir-
cuits and algorithms.

Audio and Music are well-situated to be impor-
tant testing grounds for quantum processing. Audio signal
processing has a rich history of hybrid techniques, with
analog and digital signal processing intertwined (see [8]).
We hope to see this continue with the addition of quantum
signal processing. Quantum algorithms have shown expo-
nential advantage in several areas, such as search and fac-
toring, and we look forward to seeing such advances also in
signal processing. In order to fully develop our approach to
signal modeling with splines, it is necessary to solve linear
systems to obtain B-spline models of cycles. This suggests
that the approach of HHL (see [9]) could play a key role in
data acquisition in quantum digital audio representations.

References

[1] Klassen, M.: Spline Modeling of Audio Signals and Cycle In-
terpolation, Mathematics and Computation in Music, MCM
2022, Springer, LNAI 13267 (Lecture Notes in Artificial In-
telligence), Montiel, M. et al, eds., pages 155-167.

[2] Itaborai, P, Miranda, E.: Quantum Representation of
Sound: from mechanical waves to quantum circuits,
arXiv:2301.01595v1, January 1, 2023.

[3] Collins, N.: SplineSynth: An Interface to Low-Level Digital
Audio. Proceedings of the Diderot Forum on Mathematics
and Music, Vienna, 1999, ISBN 3-85403-133-5, pp 49-61.

[4] Ardaillon, L., Degottex, G., Roebel, A.: A multi-layer FO
model for singing voice synthesis using a B-spline represen-
tation with intuitive controls. Interspeech 2015, Sep 2015,
Dresden, Germany. hal-01251898v2.

[5] de Boor, C.: A Practical Guide to Splines, revised edition,
Springer-Verlag, New York (1980)

[6] Klassen, M., Lanthier, P.: Melodic Contour Generation with
Spline Models of Cycles, Mathematics and Computation in
Music, MCM 2024, Springer, LNCS 14639 (Lecture Notes
in Computer Science), Noll, T. et al, eds., pages 210-222.

[7] Buchmann, J.: Introduction to Quantum Algorithms, Pure
and Applied Undergraduate Texts 64, American Mathemati-
cal Society, 2024

[8] Chuang, I, Liu, Y., Martyn, J., Sinanan-Singh, J., Smith, K.,
Girvin, S.: Toward Mixed Analog-Digital Quantum Signal
Processing: Quantum AD/DA Conversion and the Fourier
Transform, arXiv:2408.14729v1, August 27, 2024.

[9] Harrow, A., Hassidim, A., and Loyd, S.: Quantum algorithm
for linear systems of equations, arXiv:0911.3171v3, Septem-
ber 30, 2009.

