Spline Modeling of Audio Signals with Cycle Interpolation *

Matt Klassen?

DigiPen Institute of Technology, Redmond, WA 98052, USA
mklassen@digipen.edu
http://www.digipen.edu

Abstract. In this paper we introduce methods to model brief audio signals with cubic splines,
presupposing a fundamental frequency fo. The signal is broken up into cycles using zero-
crossings, and each cycle is modeled with a C? cubic interpolating spline based on some target
number of interpolation points. We reduce the data in the model by reducing the number of
key cycles which are used to generate intermediate cycles by the method of interpolation of
B-spline coefficients, or cycle interpolation.

Keywords: Spline - Audio - Signal - Interpolation - Cycle

1 Introduction

1.1 Motivation and Background

The modeling project which we summarize in this paper has grown out of collaboration on the
research and software project UPISketch [2], which provides a framework for graphical manipulation
of sound. The UPISketch software makes use of splines to form models of curves drawn by the
user. These graphical gestures are translated through the spline model into musical gestures which
modulate elements such as pitch, or fundamental frequency. The spline representation can be thought
of as a discrete set of B-spline coefficients, which is an intermediary between the graphical and
musical gestures. In this paper we focus on the modeling of timbre with splines, through the evolution
of cycles. The notion of cycles, instead of periods, is meant to imply that we expect that realistic
waveforms will be at best almost periodic, but not exactly. So, the B-spline coefficients will form a
discrete representation of timbre.

The use of piecewise polynomials, or splines, to model audio signals has its origins in the familiar
piecewise linear audio generators such as square, triangle and sawtooth waveforms. Higher degree
piecewise polynomial models, in particular cubic splines, were used as the basis for waveforms in
Nick Collins’ work [3], in which a single cycle, or period, of the waveform can be manipulated by the
movement of control points. Collins developed software which provides the user with the ability to
modulate the timbre of the resulting waveform by moving control points. Additionally, Collins uses
the analogy of key-framing from animation to “morph” the shape of successive cycles between two
key cycles. Our approach is similar but begins with the approximation of a brief audio sample with
interpolating cubic splines. In this way the goal is to start with something which models a recorded
sound quite closely, but might also be used for synthesis.

* Supported by DigiPen Institute of Technology.

2 Matt Klassen

In addition to timbral shaping, B-splines have been used in the modeling of envelopes for fj synthesis,
or fundamental frequency, as in [4]. The authors say in their introduction: “While B-splines have
been widely used in computer graphics, very few applications can be found in the field of sound
processing.” We propose that it is computationally feasible to model audio signals at the cycle level,
especially for short segments with a perceived fy in the lower end of the audible frequency range,
say below 1000 Hz. Although it would also be reasonable to model the envelope with B-splines, in
this paper we extract the maximum amplitude value per cycle, from the original audio sample, and
apply this as a normalization factor to the B-spline model of each cycle.

As in Collins’ work, we also take some motivation from animation with key framing. In this approach,
the cycle plays the role of one frame in animation, so we have key cycles which are used to generate
the intermediate cycles. Both the choice of interpolation points to represent a key cycle, and the
choice of the key cycles, affect the amount of data used to define, and the quality of, the final model.
Another analogy with animation is useful: the key frames might come from an artist’s imaginative
drawing, or they might come from motion capture data. In the same way, one key cycle might come
from some idea or model of timbre, or it might come from one cycle which is captured from a
particular audio recording. In this paper we explore mostly the latter case.

The spline models of audio data that we propose can also be considered from a few other perspectives:

1. They are low resolution models, since they can be used to reconstruct an audio signal from a
smaller set of data.

2. They are time domain models, differing from typical compression models which work with fre-
quency bands.

3. They are locally computable models, which means that the reconstruction of an approximation
of the full resolution signal can be computed from a smaller amount of data, the B-spline
coefficients, which give a local representation of the audio signal.

This reduction of data, from the original samples, happens in two basic directions: first in the use
of some fraction of the number of samples per cycle as interpolation points, and second in the use
of some fraction of the cycles as key cycles. Low resolution audio models may also be of interest in
realtime rendering of audio where prioritization and level of detail can be important.

A word about regularity: Both for the placement of interpolation points in one cycle, and the selection
of key cycles, we begin by choosing regularly spaced points and cycles. This is partly in order to
make these choices work nicely together. For example, if the interpolation points are not of the same
number and regularly spaced, from cycle to cycle, then interpolation between cycles becomes much
more difficult. There are many schemes, to be considered later, which attempt to take into account
the amount of variation in one cycle, changes in local curvature, and other properties which suggest
that a non-regular placement of interpolation points would be more optimal.

First, we construct the basic model of an audio sample, cycle by cycle. This means that there is no
cycle interpolation. Then we summarize various techniques for doing the cycle interpolation, and
follow this by some observations on problems that arise in this process. Finally, we point to further
development and questions.

Spline Modeling of Audio Signals with Cycle Interpolation 3

2 The basic model

The basic model consists of a cubic spline on each cycle which is used to recompute the same number
of samples in the original audio file on each cycle. This preserves any irregularity in lengths of cycles,
which is expected. We now describe more details in the context of a basic reference example. An
important point is that we consider the original audio data as forming a piecewise linear function
of time, so that we can compute the value at any time, not just at samples or integer points. This
also allows us to work with zero crossings between samples using linear interpolation.

For a reference sample we have used a guitar pluck with fy approximately 440Hz recorded at standard
CD quality (sample rate 44100 Hz and bit depth 16). The file has length 60184 samples, or about
1.37 seconds. Our first step is to determine all zero-crossings in the audio sample, which we treat as
a piecewise linear function of time measured in samples. The zero-crossings are typically not integer
points. We will refer to the audio signal values z(t) for time values t at or between samples. The user
chooses a fundamental frequency fy which then determines an approximate period or cycle length.
The choice of such fy might be based on spectral analysis or prior knowledge of the audio sample,
for instance a recorded instrument sound. This fy “guess” is then used iteratively to compute the
end of the next cycle by choosing the closest zero crossing. This way cycles are defined using zero
crossings closest to the period length guess. In the reference example, we choose to use fy = 220, one
octave below the supposed 440 (guitar pluck on first string fifth fret). This can be seen as a useful
guess from the shape of the audio signal graph. With f; = 220 there are 1531 zero-crossings, of
which 302 are used as cycle endpoints. The average number of samples per cycle is quite steady with
mean value very close to 200. However, there are some problems that inevitably show up with this
method. First, it may be that the evolution of cycles based on zero crossings leads to discontinuities
or abrupt changes in cycle shape. We will illustrate this with cycle number 181 in the reference
example. Second, it may be that the model improves by keeping the cycle lengths fixed, say at the
average value, rather than mimicking the original cycle lengths. We will return to these questions in
the context of cycle interpolation.

Continuing with the basic model, once the cycles are determined by the sequence of zeros z;, i =
0,...,p, we do a cubic B-spline fit to the audio sample data. To specify this spline function, say
f(t), we need to make various choices. Many of these choices are for reasons of simplicity, but may
be revisited or subject to change later. The degree d = 3 is the natural and most common default
for spline modeling in almost any context. It allows us to achieve second order derivative continuity
for the smallest cost. (For details on splines, bases, and knot sequences, we refer to [1].)

When working with one particular cycle, it is useful to normalize the interval to [0,1]. A cubic
spline on [0, 1] is a sequence of cubic polynomials p;(¢) on some connected sequence of k subintervals
[t;, u;11] which can be given by a sequence of breakpoints 0 = ug < ug < ug < -+ < up_1 < ug = 1.
Rather than work with an explicit polynomial sequence, we use a B-spline basis for the vector space
of all such splines f(¢) which have continuous second derivative on the interval [0, 1]. The sequence of
k subintervals can be chosen to have uniform length as a reasonable starting point. The dimension of
the vector space V of C? cubic polynomial splines on the sequence of k subintervals is then n = k+3.
This means that each cubic spline function f(t) is a linear combination of n basis functions:

f(t) = coBo(t) + -+ cn_1Bn_1(t).

To solve for such an f as an interpolating spline, we need n points (¢, s) with inputs ¢ € [0,1] and
outputs z(t) € [—1, 1] obtained from the audio data function. There are many possible B-spline bases
for this vector space V', which can be specified by a choice of knot sequence, which is a non-decreasing

4 Matt Klassen

sequence of numbers which includes the subinterval breakpoints w1, ..., ux—1 and another d4+1 =4
values on either end. With these conditions we write the knot sequence as t = {tg,...,tn} where
to<t1 <ta<t3<0,and 1 <iy_3<ity-2<tn-1 <IN.

We prefer to use the following knot sequence t which encodes some information at the endpoints of

the cycle:
1 2 k—1
t =A{to,...,tn} =140,0,0,0, —, —,...,——,1,1,1,1}.
{0) 7N} {7’7’](17]{3’ 7k7777}

Writing the B-spline basis functions associated to t as
Bo(t), B1(t),...,Bn-1(t)

we note that By(0) = 1 and B,—1(1) = 1, and all the other basis splines vanish at both 0 and 1.
Since each cycle is defined based on endpoints which are zeros, we set ¢y = ¢,,—1 = 0 and solve for
the other n — 2 coefficients for each cycle. In order to approximate the audio data in one cycle, we
find an interpolating cubic spline which matches the (piecewise linear) audio data function z(t) at
n—2 = k+1 specified points. Using the interval [0, 1] we choose the k—1 subinterval breakpoints (u;,
t=1,...,k—1) and then add two more points at the middle of the first and last subintervals. Since
we do not have derivative information for the audio data, this placement will help to approximate
the derivatives at the ends. These choices are summarized below as the list of data for each spline
which represents the model on an interval between two zero crossings:

— degreed = 3
— number of subintervals k
— subinterval sequence: [u;, u;41] = [, 2], i =0,...,k— 1

— knot sequence: t = {t¢,...,tny} = {0,0,0,0, %, %7 cey %, 1,1,1,1}

— dimension of vector space V' of B-spline functions: n=k+3 =N —3
— B-spline basis functions: By(t), B1(t), ..., Bn-1(t)

— interpolating spline: f(t) = c1B1(t) + -+ + cn—2Bn_2(t) (co = ¢—1 =0)
1

— input values: s = 0,51 = ﬁ, S$i=Ui—1,1=2,...,n =2, 8 2=1—55,8,-1=1
— target (signal) values: x(so),z(s1),.--,2(Sn—1)
Now we can define the basic model to be the sequence of zero crossings z;, j = 0,...,p and the

sequence of spline functions f;(t) on the interval [z;,z;11]. We also refer to each of these splines
and their associated data as one “cycle” (), so that the basic model is the sequence of cycles C; for
j=0,...,p— 1. Further, let the B-spline coefficients for cycle C; be ¢/, i =0,...,n — 1.

The B-spline functions can be defined with divided differences as:
Bi(t) = (=)™ (tivars — t)[tistirr, s tivaa) (E — 2)4
or using the (de Boor-Cox) recursion formula as
t—t; _ tivd+1 —t q-1
Bi(t) = —— B (1) + —F — BI-l¢
i) tita —ti " Q titd1 — it b ()

with base case:
1, t;, <t<ty
074\ _ , Ui S i+1
Bi(t) = {0, elsewhere

Spline Modeling of Audio Signals with Cycle Interpolation 5
We compute values of the B-spline functions, or of the interpolating spline f, with nested linear
interpolation, known as the de Boor algorithm:
— (Stage zero:) Set ¢? =¢; fori=0,...,N —d — 1.
— For t € [tg,tn—dq) set J to be the index so that ¢ € [ts,t541).
— (Stage p:) Forp=1,...,d, fori=J —d+p,...,J: set

t—t; _ tivd—(p—1) —t . _
cf = —Zcf 1 + Mci’_f
tiva—(p—1) — ti tiva—(p-1) — ti
- f(t) =
Note: to solve for the coefficients ¢;, i = 0,...,n — 1, we set up the interpolation problem as a

linear system by requiring that f agrees with the audio output data at each of the n input values.
Since the input values are evenly distributed, we are guaranteed a unique solution, according to the
Schoenberg-Whitney Theorem on B-spline interpolation (see [5]).

If we compute the basic model for the reference example with fy = 220 and k = 47 (d = 3,
and dimension n = 50) the model takes about 83 seconds to compute on a mac laptop in our
implementation with JUCE. This model uses about 1/4 of the original samples in the audio file and
matches the signal very closely. In terms of audio quality, this model is close enough to the original
to say that there are no obviously noticeable artifacts, or distortion.

It is not our intention to present this as a model of data compression, but rather as a starting point
to understand how cycles evolve in time during the course of a brief audio sample, and to investigate
whether it is possible to simulate this evolution through artificial means which use a smaller set
of data. The fact that the model is an adequate representation of an original audio sample can be
thought of in the way that the position of a human figure can be approximately captured by sensors
which measure the positions of a number of points on the surface of the figure in 3D space.

3 Cycle Interpolation

First, we should specify what it means to interpolate between two cycles, each represented by an
interpolating cubic spline, as in the basic model. Keeping the assumption that all cycles still have
a common basis of n B-splines, the first obvious approach is to linearly interpolate between pairs
of B-spline coefficients with the same index. But it is also reasonable to consider using quadratic
or cubic splines. In all of these cases we will refer to this set of splines as meta-splines. In order to
distinguish these from the splines used to generate each cycle in the basic model, we refer to the
latter as cycle-splines. The cycle-splines then are modeling the timbre of the audio signal, whereas
the meta-splines are controlling the evolution of the timbre, or the way in which one cycle morphs
between key cycles.

Second, it is natural to use an approximation of the envelope of the audio signal which is being
modeled. Since we are already partitioning into cycles, it is straightforward to extract the maximum
absolute value in each cycle, then when computing a cycle-spline to normalize the B-spline coefficients
so that they produce the same maximum.

There should be one meta-spline per B-spline coefficient of the cycle-splines. For example, if we are
interpolating between key cycles Cj, and Cj,, then to compute the first B-spline coefficient ¢, of

6 Matt Klassen

cycle Cj, with j1 < j < ja, we use meta-spline go(¢). This meta-spline will have inputs and targets
set proportionally to match the sequence of key cycles.

This means that if go(t;,) = ¢)' and go(t;,) = ¢}? then we compute for some t; between t;, and t;,:

Note that in forming the meta-splines it may be that we do not place the inputs for interpolation in
a uniform sequence. This arises naturally when we choose to place key cycles more densely near the
beginning than at the end, for instance when modeling an audio sample which has a more varied
attack phase and a much less varied sustain and release phase, or tail.

We can now define the Cycle Interpolation Model to be given by the data:
— key cycles Cj,...,C

Ja—1
— B-spline coefficients of key cycle C : CZT, i1=0,....,n—1

— meta-splines g;(¢) with target values i=jo,... s Jq—1

K3

— max values for envelope a;, i =0,...,p—1
— cycle zeros z;, 1 =0,...,p

Two important things are still to be determined: 1) how to determine the form of the meta-splines,
and 2) how to choose the key cycles.

Regarding the choice of meta-splines: If we use degree 1, or simply linear interpolation between
corresponding B-spline coefficients, then the effect is similar to a cross-fade between two key cycles.
As Collins points out, this is not just a cross-fade between B-spline coefficients (or control points)
but with no other special conditions it is also a cross-fade between audio sample values. But since we
are allowing for varying cycle lengths z;11 — z; and we are also normalizing by the envelope values,
the result is not strictly a cross-fade. For simplicity and computational speed we have mostly used
the linear case, but it is interesting to also note some properties of the cubic case.

It is tempting to use both cubic meta-splines and also cubic cycle-splines, if for no other reason than
elegance and consistency. But there are a few pitfalls. There are limits to the practical computation of
linear systems used in solving for each interpolating spline. In the case of cycle-splines this dimension
is n = k+3, the dimension of the vector space of splines. In the case of the meta-splines the dimension
is equal to g, the number of key cycles. If we have say 300 cycles, as with the reference example,
and we choose to use half of these as key cycles, then we have dimension ¢ = 150 which can be
prohibitively large for running experiments with modeling. Fortunately, we are interested in models
with fewer key cycles. Another pitfall is that there can be too much variation in the cubic spline
model which fits the key cycle data, especially if there are long gaps between key cycles, as may be
the case in the tail of a signal. This suggests that there may be reason to explore other types of
spline models for the meta-splines.

We also note a type of duality that arises when using cubic splines as both meta-splines and cycle-
splines. In particular, the number of meta-splines is n, which is also the dimension for cycle-splines,
and the number of cycle-splines is ¢ which is also the dimension of the meta-splines. When generating
the output audio data from a model, the spline function f;(¢) is evaluated N; times according to
the number of samples per cycle N;. Similarly, when producing intermediate B-spline coefficients
for non-key cycles, the spline function g;(t) is evaluated @ times according to the total number of

Spline Modeling of Audio Signals with Cycle Interpolation 7

cycles @ to be generated by the model. Since we are interested in models which depend on a small
amount of data, this can lead to some special cases. Suppose, although N; typically varies, that it
is constant: NV; = N for all j. Additionally, suppose that ¢ = n, and that ¢ = N, and further that
fi = g; for all i. This means our model is generated by one set of cubic splines which play the dual
roles of cycle-splines and meta-splines. Since Q = N, the number cycles coincides with the number
of samples per cycle, and we only need to evaluate each spline at the appropriate points once. This
assumes that the intermediate cycles are represented by uniform subdivision of the interval [0, 1],
just as the samples in one cycle are. It also implies that each meta-spline has the value zero at the
ends, since this is required for the cycle-splines. If a cycle interpolation model satisfies all of the
above requirements, we call it a reflexive model.

Next, we consider different choices of key cycles.
Regular Cycle Interpolation

The first approach is to use regularly spaced key cycles, which we call regular cycle interpolation. If
the entire set of cycles is C;, i = 0,...,p — 1, then we specify some positive integer m and choose
cycles Cjjp, as key cycles, j = 0,...,r, with rm < M —1 and r maximal. There are two variations on
this regular cycle interpolation, the first of which is to insist on the last cycle also being included.
This allows for the obvious cycle interpolation between C.,, and C,_;. The second variation is to
not include the last cycle as key, and to simply use C,.,,, repeatedly for the final cycles. In this case,
it useful to still follow the envelope of the original audio signal, as indicated above.

Exponential Cycle Interpolation

In order to focus more closely on the attack phase of a short audio sample, such as the reference
example, it makes sense to choose more key cycles near the beginning and fewer towards the end,
or tail. One useful sequence is to have key cycle indices 0 and then 2°: 0,1, 2,4, 8, ... which we refer
to as exponential cycle interpolation.

Fibonacci Cycle Interpolation

Similar to exponential, but a slightly denser pattern is 0,1,2,3,5,8, ..., which we call Fibonacci cycle
interpolation using the recursion k;41 = k; + k;—1.

These are some of the first types of sequences of key cycles that we found natural or useful. In the
next section we discuss some of the problems that arise with cycle interpolation.

4 Problems with Cycle Interpolation

There are various problems which can cause spectral deficiencies or audio artifacts with cycle inter-
polation. We discuss two of these here: missing sub-harmonics, and cycle shape discontinuities.

Missing sub-harmonics:

This is a natural defect of cycle interpolation, since it is not a priori designed to follow the sub-
harmonic oscillatory pattern of an original audio waveform, but rather to fill in the non-key cycles
artificially with B-spline interpolation. This can be observed with the reference example. In figure
1 is a spectral analysis of a portion of the reference example using Audacity software.

Next, in figure 2, is a similar plot for the model using the Fibonacci cycle interpolation with 15
key cycles. Although the frequency guess 220 Hz and higher harmonics are well represented, the

8 Matt Klassen

Fig. 1. Spectrum for Reference Example

eve Frequency Analysis

50Hz 70Hz = 100Hz 130Hz 200Hz 300Hz 400Hz 600z 1000Hz 1400tz 2000Hz G000Hz 5000Hz 7000Hz 9400Hz 13000Hz 20000Hz
Cursor: 191 Hz (63) = -60 dB Peak: 251 Hz (B3) = -60.0 dB Grids
Algorithm: = Spectrum Size: 1024 Export...
Function: ~ Hann window Axis: Logfrequency @ Replot...

sub-harmonic 110 Hz is markedly absent. There are various ways to attempt to address this issue.
Rather than delving into DSP post-processing, we prefer in this paper to first attempt to work
with the spline model. This is a good opportunity to make a simple adjustment to the model which
is surprisingly cheap and effective. We can represent the sub-harmonic with a quadratic spline,
represented in the same basis as the cubic cycle-splines. This requires simply solving for a spline on
one cycle of the form A(1 — t)¢t where A > 0 represents the appropriate amplitude borrowed from
the spectrum of the original waveform. We then mimic a sinusoid on successive cycles by alternating
between A and —A. The B-spline coefficients of this “parabolic sinusoid” can be added directly
to the B-spline coefficients of each cycle-spline. Note that this method preserves the allowance of
varying cycle lengths as well. The resulting spectrum is shown in figure 3.

This example brings up a point about audio rendering and mixing with spline models. Given several
spline models, which are to be mixed, one can do the mixing prior to the final rendering, as long
as the B-spline bases are consistent. This can lead to a significant reduction in computation. By
consistent we mean that the models have the same degree d and the same number of subintervals
per cycle k. These could be constant, or could vary but still agree per cycle. The two models do not
need to have the same key cycles, but if they do there will be a greater reduction in computation.

Cycle shape discontinuities:

The next type of problem is due to the inherent inaccuracies which occur when attempting to break
up an audio sample into cycles. This is illustrated in the reference example, with fo = 220 Hz
(guess at fundamental frequency). With the help of our visualization software for cycle interpolation
(written with JUCE) we note that a problem occurs in the region around cycle 180. There are 8
prominent stationary points in each cycle starting at cycle 70. The last of these is a relative minimum
occurring just before the right endpoint of each cycle, which we will call feature A. We can see that
feature A begins to drift upwards in cycles 100 through 170, then finally transitions above the time

Spline Modeling of Audio Signals with Cycle Interpolation

Fig. 2. Spectrum of Model Without Sub-harmonic

Frequency Analysis

i

50Hz ~ 70Hz 100Hz 130Hz

Cursor: 125 Hz (B2) = -77 dB

200Hz 300Hz 400Hz

Algorithm: Spectrum

600H;

Function: Hann window

Ll I
iz 1000Hz 1400Hz 2000Hz 3000Hz 5000Hz 7000Hz 9400Hz 13000Hz 20000Hz
Peak: 222 Hz (A3) = -47.5 dB Grids.
Size: 1024
Axis: Log frequency

Export...

Replot...

Fig. 3. Spectrum of Model With Sub-harmonic

Frequency Analysis

" S0Hz | 70Hz 100Hz 130z

Cursor: 2236 Hz (C#7) = -44 dB

200Hz 300Hz 400Hz

Algorithm: _Spectrum

Function: ~Hann window

600Hz

1000Hz 1400Hz 2000Hz 3000Hz 5000Hz 7000HZ 9500Hz 13000Hz 20000Hz
Peak: 2215 Hz (C#7) = -41.7 dB Grids
Size: 1024

Export...
Axis: Log frequency Replot...

10 Matt Klassen

axis by cycle 182. This is illustrated in figure 4 around cycle 180. This behavior of the graph is part
of the natural evolution of the shape of the curve but it is a problem for cycle interpolation. We
will call this problem a shape discontinuity, meaning an abrupt change in the shape of consecutive
cycles. This is not a property of the original waveform, just of the cycle interpolation model. The
original waveform has a smooth progression of cycles, but these cycles are not always best defined
by zero crossings.

It is worth noting that this poses no problem for the basic model (without cycle interpolation) since
the cycles are each modeled independently. In fact, in the basic model, the cycles could be assigned
almost any sequence of lengths and cause no problems. It is also worth noting that the reference
example has only one instance of an obvious shape discontinuity of this type.

To see the effect on cycle interpolation, we illustrate in figure 5 a graph which also includes the
model (in blue) with regular cycle interpolation value m = 5. The shape discontinuity causes the
B-spline coefficients of the model to change drastically between key cycles. It is no surprise that this
causes audible artifacts in the resulting audio.

There are a few ways to mitigate this problem by adjusting the model. The most obvious is to add
key cycles at and around the transition point, for instance by adding key cycles 178 through 182.
This method does cause reduction in the audible artifacts, but does not really solve the problem
which stems from the shape discontinuity. Another approach is to release the waveform at an earlier
point from its obligation to match any more key cycles from the original waveform. In other words,
this approach removes rather than adds key cycles. One obvious result is that the tail produced by
the model will differ significantly from the original, but this may have a small effect on the outcome.
For instance, if we use the Fibonacci cycle interpolation model for the reference example, the initial
sequence is: 0,1,2,3,5,8,13,21, 34, 55,89, 144,233,301, with 14 key cycles. If we remove the last two
then the tail produced by the model is based on cycle 144, and has only 12 key cycles. If these
key cycles use about 1/3 of the samples per cycle (say k = 63) then we have a good model which
removes most of the audible artifacts. The data in this model can be further reduced by setting
the cycle length to a constant, say 200 samples. If we use the simplest type of meta-splines (linear
interpolation) then the data can be measured by the number of floats needed to reconstruct the
model as a fraction of the original audio data. We include in the model the normalization value of
one float per cycle. In this case the percent of the original data stored in the model is about 0.183%.

We have found that cycle interpolation has the potential to form good models of recorded sounds
with a small fraction of the original sampled data. There are interesting problems which occur in
representing sub-harmonics and avoiding errors inherent in the process of breaking up audio signals
into cycles. We are encouraged by the results so far and look forward to seeing these techniques used
in the design of new sounds in UPISketch.

5 Future work

There are many aspects to explore in more detail. A few of these are:

1) From the sound design perspective, use cycle interpolation together with randomization, or cellular
automata, to explore new timbres.

2) Investigate how shape discontinuities arise when cycle interpolation is applied to various musical
instrument samples.

Spline Modeling of Audio Signals with Cycle Interpolation

Fig. 4. Shape Discontinuity Near Cycle 180

Plot argers Pay Cycle C Play Model Play Cycle Env I Graph MetaSplines

Frequency Guess |220.00 Hz Cycle Frequency | 220.00 Hz K = # subintervals | 50

Graph Model | Regular Cycle Interp ||} Normalize Cycle Length () Randomize m = key cycle mult | 20

Fig. 5. Cycle Interpolation Near Cycle 180

Play Shade Cycles Plo targets e Piay Model
Frequency Guess 220,00 Hz Cycle Frequency | 220.00 Hz K =# subintervals 50

Close Graph Model M Regular Cycle Interp [N)iNormalize Cycle Length I | Randomize m = key cycle mult 5

11

12 Matt Klassen

3) Use cycle interpolation to model phones for concatenative speech synthesis.

4) Reduce the data in cycle interpolation further, taking into account the prioritization of interpo-
lation points based on discrete curvature.

5) Address the shape discontinuity problem by allowing cycles to be defined at points which are not
Z€ro-Ccrossings.

References

1. Klassen, M.: Lecture notes on Bezier curves and polynomial splines. http://azrael.digipen.edu/notes/

2. UPISketch: The UPIC idea and its current applications for initiating new audiences to music. Bourotte,
R., Kanach, S., Organised Sound, vol 24, no.3, 252-260, 2019.

3. Collins, N.: SplineSynth: An Interface to Low-Level Digital Audio. Proceedings of the Diderot Forum on
Mathematics and Music, Vienna, 1999, ISBN 3-85403-133-5, pp 49-61.

4. Ardaillon, L., Degottex, G., Roebel, A.: A multi-layer FO model for singing voice synthesis using a B-spline
representation with intuitive controls. Interspeech 2015, Sep 2015, Dresden, Germany. hal-01251898v2.

5. de Boor, C.: A Practical Guide to Splines, revised edition, Springer-Verlag, New York (1980)

