Tone Generation with Polyphonic Cycles and Spline Modeling

Matt Klassen
DigiPen Institute of Technology
mklassen@digipen.edu

ABSTRACT

In this paper we introduce polyphonic cycles for wave-
forms which can be used to produce tones with harmonic
content. The cycles are first modeled with cubic splines,
then mixed at the cycle level. Interpolation between cycles
is also used to change timbre from instrument-based timbre
to polyphonic content within the duration of one tone. We
also introduce glissandos of polyphonic tones which are
computed as sequences of cycles of increasing (or decreas-
ing) length. These techniques, as well as melodic contour
generation from spline cycles, are used in the accompany-
ing composition “SplineKlang”.

1. INTRODUCTION

Interplay between musical elements such as pitch, rhythm,
harmony, and timbre, has been a tool and inspiration for
music composition for centuries. In this paper we discuss
methods and experiments with the generation of timbre
which are directly related to harmonic content. This re-
lationship is established at the very small time scale of one
cycle. For example, a tone at the pitch A220 has one cycle
of length ﬁlo second or roughly 5 milliseconds. Harmonic
relations between pitches can be “baked into” a tone at the
level of one cycle, using just intervals or frequency ratios.
We refer to such cycles containing harmonic content “poly-
phonic cycles”.

We model cycles of waveforms with polynomial splines,
which we review briefly in section 2. We then define poly-
phonic cycles in section 3.1 and explore our main example
of these using seventh chords in 3.2. In section 4 we sum-
marize the technique of melodic contour generation from
one cycle of a waveform. Finally, we give a construction
of glissandos at the cycle level in section 5.

The techniques explored in this paper grew out of mono-
phonic cycle modeling with splines, and turned in the di-
rection of polyphonic cycles during the collaboration be-
tween mathematician and musician, which resulted in this
paper. Introducing polyphony into the timbre of tones at
first seemed out of line with the original intent, but quickly
turned into a rich playground for generative sound.

2. SPLINE MODELING OF CYCLES
Previous use of splines in audio synthesis and f; model

envelopes, can found in [1] and [2] respectively. We use
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the techniques described in [3] to model audio segments,
having some discernable but approximate fundamental fre-
quency fo, using splines. One can choose a set of rep-
resentative cycles, or segments which are approximately
repeating, and use interpolation to fill in the intermediate
cycles. This works well for instrument samples, where it
is possible to construct accurate models of audio by using
data from a small number of cycles. The local timbre of a
waveform is preserved if the number of points in one cy-
cle matched by the spline (called interpolation points) is
approximately one third of the number of samples in the
cycle. For more details on spline modeling, see [4].

An important point is that cycles are modeled over time
intervals given as real numbers, or floats. This means that
exact values of fundamental frequency fy correspond to
exact cycle lengths 1/ fo. Since we compute with sampled
waveforms, it will be assumed that sampling can be treated
as independent of fj and cycle length. The spline function
used to model a cycle can be specified to match certain in-
terpolation points coming from a real waveform. In this
case we treat the sampled waveform as a continuous func-
tion by using linear interpolation between sample values,
so that selecting say n evenly spaced points along a cycle
can also be independent of the placement of samples. Once
a spline model of a cycle is determined, as a set of B-spline
coefficients, it can then be used on a cycle of any length,
appropriately resampled.

Another important point is that even though cycles are
initially thought of as representing waveforms of some con-
stant fo, this changes when we do cycle interpolation, or
when we vary pitch as in glissandos. Whether we are mod-
eling recorded sounds or synthesizing new sounds, or a
mixture of these two, the cycle modeling and cycle inter-
polation methods thrive in the context of waveforms with
constantly varying pitch and timbre.

3. POLYPHONIC CYCLES
3.1 Defining Polyphonic Cycles

Polyphonic cycles are meant to represent audio waveforms
which have multiple fundamental frequencies, as opposed
to a monophonic cycle having a single fundamental fre-
quency. For the purposes of this paper, we define a poly-
phonic cycle as one which consists of a mix (or average
of values) of several constituent waveform cycles, each of
which is generated by a set of B-spline coefficients. If
the duration (or length) of the polyphonic cycle is L, and
two constituent waveform cycles have lengths L and Lo,
then we also require that L is a common multiple of I,
and Lo. With these requirements it is possible to mix the
polyphonic cycle with an exact integer number of cycles
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of each of the constituent lengths. If the polyphonic cy-
cle is then repeated as a waveform, it contains not only
prominent higher frequencies corresponding to cycles L
and Lo, but also frequency components (elements of tim-
bre) corresponding to the constituent waveforms. So the
data required to write a polyphonic cycle amounts to:

* time interval of length L (polyphonic cycle length)

e subintervals of length L;,: = 1,...,m
(constituent cycles)

* integers k; = L/L;

* B-spline coefficients ¢; j, 7 = 1,...,n for each
constituent cycle

Associated to the cycle lengths in the above data are fun-
damental frequencies fo = 1/L and constituent funda-
mental frequencies fo; = 1/L;. A polyphonic cycle can
then be realized as a buffer of audio samples over the time
interval L. This set of audio samples can then also be re-
sampled with a new spline model, giving a compressed
representation of the polyphonic cycle as a vector of B-
spline coefficients. The polyphonic cycle becomes more
interesting if the values of fy ; have some harmonic rela-
tionships. We explore one example (among many possi-
bilities) in the next section, in particular where the fo ;,
i =1,2,3,4, form the pitch sequence of a seventh chord.

3.2 Seventh Chords

We describe here certain types of seventh chords used to
construct polyphonic cycles. These chords can be thought
of as Just Intonation versions of traditional seventh chords
and inversions of such chords having four pitches, or fun-
damental frequencies, contained within one octave. Such a
chord is most simply represented by the well-known har-
monic seventh which is a dominant seventh chord in root
position with notes having fundamental frequencies 4 fy,
5 fo, 6 fo, 7 fo, or equivalently having ratios between pitches
given as 5/4 (major third), 6/5 (minor third), and 7/6 (mi-
nor third). The name, of course, comes from the fact that
these frequencies occur naturally as harmonic partials of
the fundamental fj. The cent values of the intervals, or fre-
quency ratios, are approximately 386.3, 315.6, and 266.9
(where 100 equals one equal-tempered semitone with fre-
quency ratio 2'/12). Compared to Equal Temperament,
these intervals are a flat major third and a sharp minor
third, by about 15 cents each, followed by a very flat minor
third, by about 33 cents. Such a harmonic seventh chord
will produce virtually no audible beat patterns amongst the
overtones or harmonic partials of the four tones, and can
occur in barbershop quartet music as a preferred form of
dominant seventh chord.

This type of seventh chord is also useful in generating
polyphonic cycles since the ratios between frequencies cor-
respond to simple ratios between cycle lengths. Then to
create one polyphonic cycle of length 1/ f, we simply write
into a cycle of length 1/50 sec exactly 4 cycles of the first
tone, 5 of the second, 6 of the third, and 7 of the fourth.
Mixing these at the cycle level forms one cycle of the har-
monic seventh chord. Note that this simple process is not
possible with an equal-tempered seventh chord since the

number of cycles for each tone will not be an integer value.
Note also that we are not using sinusoids as the tones rep-
resenting each fundamental frequency f0;, rather we are
using a full-spectrum tone with one predetermined cycle
of some exact length generated from a spline model. It is
possible to use different spline models for each of the four
cycles which are derived from instrument tones or synthe-
sized tones.

In table 1 summarize the harmonic seventh chord and its
inversions. In each line the sequence of scalar values is
obtained from the previous line by multiplying the lowest
value by 2, having the effect of moving the lowest pitch
up an octave. The last column is the semitone separation
type, or S-type, which represents the 3 intervals between
successive pitches in semitones.

| foscalars | Cent values | S-type |
4-5-6-7 386.3 — 315.6 — 266.9 | [4,3, 3]
5.6-7-8 | 315.6 — 266.9 — 231.2 | [3,3,2]
6-7-8-10 | 266.9 —231.2 — 386.3 | [3,2,4]
7-8-10-12 | 231.2 — 386.3 — 315.6 | [2,4,3]

Table 1. Harmonic Seventh Chord Ratios and Intervals

One can find many other seventh chord representations
using small integer sequences. For example, all of the 31
seventh chord types in the constraint-based system of sev-
enth chords introduced in [5] can be done in this way. For
example, in table 2 we use the similar sequence 5-6-7 -9
to form the root position half-dimished seventh chord, and
in table 3 we use the sequence 6 - 7 -9 - 11 to form the root
position of a minor seventh chord.

| Joscalars | Cent values | S-type |
5-6-7-9 315.6 — 266.9 — 435.1 | [3,3,4]
6-7-9-10 | 266.9 — 435.1 — 1824 | [3,4,2]
7-9-10-12 | 435.1 —182.4 — 315.6 | [4,2,3]
9-10-12-14 | 182.4 — 315.6 — 266.9 [2, 3, 3]

Table 2. Half-Diminished Seventh Chord Ratios and Intervals

| foscalars | Cent values | S-type |
6-7-9-11 266.9 — 435.1 — 347.4 | [3,4,3]
7-9-11-12 435.1 — 347.4 — 150.6 | [4,3,2]
9-11-12-14 | 347.4 —150.6 — 266.9 | [3,2,3]
11-12-14-18 | 150.6 — 266.9 — 435.1 | [2, 3, 4]

Table 3. Minor Seventh Chord Ratios and Intervals

Finally, we also have a full-diminished seventh chord in
table 4. In this case, each of the inversions is an approxima-
tion of an equal-tempered full-diminished seventh chord
with same S-type [3, 3, 3], but in this Just Intonation con-
text the inversions are not the same.

To attain other familiar seventh chords such as Major
Seventh, inversions require the appearance of voices sep-
arated by one semitone, which requires larger consecutive
integer values such as 15, 16.

It is interesting to also go in the opposite direction and
consider sequences which do not represent good approx-



| Jfoscalars | Cent values | S-type |
12-14-17-20 | 266.9 — 336.1 — 281.4 | [3,3,3]
14-17-20-24 | 336.1 — 281.4 — 315.6

3,3,
281.4 — 315.6 — 266.9 | 3,3,
315.6 — 266.9 — 336.1 | [3,3

17-20-24-28
10-12-14 - 17

LW W W

|
]
3,3

Table 4. Full Diminished Seventh Chord Ratios and Intervals

Figure 1. polyphonic cycle

imations of any traditional seventh chords. For example,
perhaps the simplest case is 6 - 7 - 8 - 9. This chord has
spread from low to high tones given by a Just Perfect Fifth
with ratio 3/2, and has S-Type [3, 2, 2] with cent values of
successive intervals 266, 231, and 203, coming from the
ratios 7/6, 8/7, and 9/8 respectively. This could be de-
scribed as a Just version of an eleventh chord.

4. MELODIC CONTOURS

Polyphonic cycles tend to have more variation in the sam-
ple values over one cycle than a monophonic cycle, say
derived from an instrument sample with one fundamental
frequency. If we use a polyphonic cycle as a melodic con-
tour, we thus have a melody with more variation in pitch
than one derived from a monophonic cycle. One way to
measure variation is simply to count the number of zero
crossings. For basic definitions and techniques of melodic
contours derived from cycles of waveforms, see [6].

In figure 1 we show a polyphonic cycle generated from
the monophonic cycle shown in figure 2. This monophonic
cycle is modeled with a spline based on a recorded sam-
ple of french horn. It is used four times to generate each

Figure 2. monophonic cycle

bic spline from beoeffs file:

of the constituent cycles at four distinct pitches. Those
four pitches have the ratios of the harmonic seventh chord
4-5-6-7. So we write into one interval representing
the polyphonic cycle first 4 cycles, then 5, then 6, then 7,
then mix these into one polyphonic cycle waveform. The
polyphonic cycle is then sampled again to obtain a spline
model which is graphed in figure 1. We also plot station-
ary points on the graph to indicate one method of melodic
contour generation. The melodic contour is sampled to get
pitches as well as durations of notes. Each line segment on
the graph indicates a pitch based on its y-coordinate, and a
duration based on its length. The scale of x and y axes de-
termines the pitch range and duration range. For example
we may use —1 < y < 1 to determine pitches or funda-
mental frequencies 2¥ f ranging an octave above or below
some central chosen pitch fj.

5. GLISSANDOS

In this section we present some algorithms to generate glis-
sandos with exact integer numbers of cycles fitting into a
prescribed time interval. These techniques were designed
while working on polyphonic cycles, but they apply equally
to any cycle type.

Glissandos are created typically using pitch-shifting algo-
rithms, using FFT (Fast Fourier Transform) to work with
the signal in the frequency domain. In the context of cy-
cle modeling, we work primarily in the time domain but
we keep track of fundamental frequency which is repre-
sented locally as the inverse of cycle length. This approach
lends itself well to the problem of creating a glissando, or
monotonic and continuous (increasing or decreasing) pitch
change over a small time interval. We restate the problem
using cycle length as follows:

Glissando Generation Problem: Given a time interval L,
starting cycle length ¢y and ending cycle length c;, with
co + c1 < L, find a positive integer k and a sequence of
cycle lengths Ly, ..., Ly satisfying:

e the sequence cg, L1, ..., L, c is strictly monotone

. CQ—FZ:f:lLi—FCl:L.

Apart from a few cases which are not solvable (for in-
stance ¢y < cp and L — ¢; — ¢co < c¢1) we will assume
that a solution exists and find several methods to find ap-
proximate and exact solutions. First, we assume that L' =
L —cq —cy isreasonably large compared to ¢; and co, and a
solution k exists. We will also let Ly = ¢; and Ly = ¢3.
Finding an approximate solution using linear growth rate
is a good first step. We can do this by first supposing that
Ly=Ly=-= L =9%% = q, and that k is the floor
(greatest integer) of the real number k' = L'/a. Clearly
this is not a solution, since the sequence L; is not mono-
tone. Further, the sum is only approximate. To see this,
let = be the fractional part of &, so that ¥’ = k + x, and
observe:

k /

L
N
i=1

=L —ax



So the sum of all cycle lengths is L — ax. Next, we adjust
the values of cycle lengths to linearly interpolate between
co and c;. The transformation is most easily described by
taking the k points (k%_l, a), i =1,...,k, and projecting
them onto the line (1 — ¢)co + tey which passes through
(0,¢0), (1,¢1), and (3, a). Call the new points (5, ),
where

_k+1-—4d i
Yyi = k1 Co+k+101~

By symmetry, these projected points have y-coordinates
which still add up to ka, so we take the adjusted cycle
lengths to be L; = y; forv = 1,...,k, Ly = c¢g, and
Liy1 = c1. These values are monotonic and have sum
equal to L — ax.

In summary, the linear approximation to the above Glis-
sando Generation Problem is given as

. a:L;rcl,L’:Lfcofcl
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o k= floor(k'),x =k —k

e Lo=co, Lpt1=c1
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Next, we construct a quadratic curve which gives an exact
solution to the glissando problem. We begin with the same
values a, k&’ and k, and the points (#4-1’ a),i=1,... k.
But now we project these points onto the quadratic Bezier
curve

q(t) = co(1 — )% + (a +6)2(1 — t)t + c1t2.

This curve has the properties: ¢(0) = co, g(1) = ¢4, and
q(3) = a+16. If 6 = 0 the curve contains the point (3, a)
and hence is equal to (a quadratic parametrization of) the
line (1 — ¢)co + teq. If 6 > 0 then the curve will be above
this line and we can use 4 as a free parameter to force the
sum of the L; = ¢(7%5) to equal L.

After some simplification, we arrive at:

s_ (L N[, 2t
S \k+2 3k+3 ’
6. EXAMPLES

In our accompanying composition “SplineKlang” the first
melodic fragment uses a melodic contour from one cycle
and timbre from a mix of polyphonic and monophonic cy-
cles. The mix of cycles are generated from instrument sam-
ples, such as clarinet, as well as polyphonic cycles. It is
necessary to use the same spline dimension in each of these
cycles in order to interpolate between them for the duration
of a tone. This technique has been previously used primar-
ily to generate tones which model instrument samples quite
closely. In that case, the cycles are called key cycles, which
serve a similar role as key frames in animation.

7. CONCLUSIONS AND FUTURE WORK

We have found that introducing polyphony into the timbre
of tones on the very short time scale of one cycle opens up a
wealth of possible timbres which can coexist with timbres
based on instrument samples. The polpyphonic cycles con-
structed in this paper are based on seventh chords, which
are justly tuned, but there are many other forms to explore.
In addition to these forms, further experimentation in the
mix of cycles used to construct the constituent cycles, such
as coming from different instrument models, can also be
considered. Variations on the cycle-based construction of
glissandos are also under development. For example, one
can use cubic and quartic polynomials to enable the growth
rate of cycles to be close to zero at the ends and steeper in
the middle, by setting the derivative to zero at the ends.
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