Constructing Numbers
Remember way back when you first learned how numbers were in base 10. You could break down the number into its parts (ones, tens, hundreds, thousands, etc.).Given the decimal number 3045.125, it expands like this:
3045.125 = (3*1000) + (0*100) + (4*10) + (5*1) + (1/10) + (2/100) + (5/1000)
Rewrite it as powers of 10:
= (3*103) + (0*102) + (4*101) + (5*100) + (1*10-1) + (2*10-2) + (5*10-3)
Simplify:
= 300 + 0 + 40 + 5 + .1 + .02 + .005
And do the arithmetic:
= 3045.15
Binary numbers work in the exact same way, except that we use 2 as a base instead of 10.
Given the binary number 10110111.1011, it expands like this:
Rewrite as powers of 2 (integer portion):10110111.1011 = (1*128) + (0*64) + (1*32) + (1*16) + (0*8) + (1*4) + (1*2) + (1*1) + (1/2) + (0/4) + (1/8) + (1/16)
Simplify:10110111 = (1*27) + (0*26) + (1*25) + (1*24) + (0*23) + (1*22) + (1*21) + (1*20)
= 128 + 0 + 32 + 16 + 0 + 4 + 2 + 1
Rewrite as powers of 2 (fractional portion):
.1011 = (1*2-1) + (0*2-2) + (1*2-3) + (1*2-4)
Simplify:
= .5 + 0 + .125 + .0625
And do the arithmetic:
Condensed version:10110111.10112 = 183.687510
Decimal:
3045.125 = (3*1000) + (0*100) + (4*10) + (5*1) + (1/10) + (2/100) + (5/1000)
= (3*103) + (0*102) + (4*101) + (5*100) + (1*10-1) + (2*10-2) + (5*10-3)
= 300 + 0 + 40 + 5 + .1 + .02 + .005
= 3045.15
Binary:
10110111.1011 = (1*128) + (0*64) + (1*32) + (1*16) + (0*8) + (1*4) + (1*2) + (1*1) + (1/2) + (0/4) + (1/8) + (1/16)
10110111 = (1*27) + (0*26) + (1*25) + (1*24) + (0*23) + (1*22) + (1*21) + (1*20)
= 128 + 0 + 32 + 16 + 0 + 4 + 2 + 1
= 183
.1011 = (1*2-1) + (0*2-2) + (1*2-3) + (1*2-4)
= .5 + 0 + .125 + .0625
= .6875
10110111.10112 = 183.687510
Binary vs. decimal fraction
Decimal Decimal
Binary fraction value
-----------------------------------
.1 1/2 .5
.01 1/4 .25
.001 1/8 .125
.0001 1/16 .0625
.00001 1/32 .03125
.000001 1/64 .015625
etc...
Examples of binary and decimal equivalents:
Binary Decimal (fraction) Decimal
-------------------------------------------------
1.1 1 1/2 1.5
1.101 1 5/8 1.625
101.001 5 1/8 5.125
1001.0101 9 5/16 9.3125
0011.10101 3 21/32 3.65625
Points
Bit
Position Exponent Decimal Binary
--------------------------------------------------------------------
1 20 1 1
2 21 2 10
3 22 4 100
4 23 8 1000
5 24 16 10000
6 25 32 100000
7 26 64 1000000
8 27 128 10000000
9 28 256 100000000
10 29 512 1000000000
11 210 1024 10000000000
12 211 2048 100000000000
13 212 4096 1000000000000
14 213 8192 10000000000000
15 214 16384 100000000000000
16 215 32768 1000000000000000
17 216 65536 10000000000000000
18 217 131072 100000000000000000
19 218 262144 1000000000000000000
20 219 524288 10000000000000000000
21 220 1048576 100000000000000000000
22 221 2097152 1000000000000000000000
23 222 4194304 10000000000000000000000
24 223 8388608 100000000000000000000000
etc...
Example: 10010011001
10000000000 2048
10000000 128
10000 16
1000 8
+ 1 + 1
------------ -----
10010011001 2201
Reference values for fractional portion (to the right of the point):
Bit Decimal Decimal
Position Exponent Fraction Number Binary
-------------------------------------------------------------------------------------------------------
1 1/21 1/2 0.5000000000000000000000000 .1
2 1/22 1/4 0.2500000000000000000000000 .01
3 1/23 1/8 0.1250000000000000000000000 .001
4 1/24 1/16 0.0625000000000000000000000 .00001
5 1/25 1/32 0.0312500000000000000000000 .000001
6 1/26 1/64 0.0156250000000000000000000 .0000001
7 1/27 1/128 0.0078125000000000000000000 .00000001
8 1/28 1/256 0.0039062500000000000000000 .000000001
9 1/29 1/512 0.0019531250000000000000000 .0000000001
10 1/210 1/1024 0.0009765625000000000000000 .00000000001
11 1/211 1/2048 0.0004882812500000000000000 .000000000001
12 1/212 1/4096 0.0002441406250000000000000 .0000000000001
13 1/213 1/8192 0.0001220703125000000000000 .00000000000001
14 1/214 1/16384 0.0000610351562500000000000 .000000000000001
15 1/215 1/32768 0.0000305175781250000000000 .0000000000000001
16 1/216 1/65536 0.0000152587890625000000000 .00000000000000001
17 1/217 1/131072 0.0000076293945312500000000 .000000000000000001
18 1/218 1/262144 0.0000038146972656250000000 .0000000000000000001
19 1/219 1/524288 0.0000019073486328125000000 .00000000000000000001
20 1/220 1/1048576 0.0000009536743164062500000 .000000000000000000001
21 1/221 1/2097152 0.0000004768371582031250000 .0000000000000000000001
22 1/222 1/4194304 0.0000002384185791015625000 .00000000000000000000001
23 1/223 1/8388608 0.0000001192092895507812500 .000000000000000000000001
etc...
Binary/Decimal converter (BinConverter.exe)
Additional Resources: