
24 October 2006 ACM QUEUE rants: feedback@acmqueue.com

THE
LONG
ROAD

TO
64

BITS
Double, double, toil and trouble—Shakespeare, Macbeth

System
EvolutionFO

CU
S

 JOHN R. MASHEY, TECHVISER

ACM QUEUE October 2006 25 more queue: www.acmqueue.comT
Shakespeare’s words (Macbeth, Act 4, Scene 1) often cover
circumstances beyond his wildest dreams. Toil and trouble
accompany major computing transitions, even when peo-
ple plan ahead. To calibrate “tomorrow’s legacy today,”
we should study “tomorrow’s legacy yesterday.” Much of
tomorrow’s software will still be driven by decades-old
decisions. Past decisions have unanticipated side effects
that last decades and can be difficult to undo.

For example, consider the overly long, often awkward,
and sometimes contentious process by which 32-bit
microprocessor systems evolved into 64/32-bitters needed
to address larger storage and run mixtures of 32- and 64-
bit user programs. Most major general-purpose CPUs now
have such versions, so bits have “doubled,” but “toil and
trouble” are not over, especially in software.

This example illustrates the interactions of hardware,

26 October 2006 ACM QUEUE rants: feedback@acmqueue.com

languages (especially C),
operating system, applica-
tions, standards, installed-
base inertia, and industry
politics. We can draw
lessons ranging from high-
level strategies down to
programming specifics.

FUNDAMENTAL
PROBLEM (LATE 1980S)
Running out of address
space is a long tradition
in computing, and often
quite predictable. Moore’s
law increased the size of
DRAM approximately
four times every three
to four years, and by the
mid-1990s, people were
able to afford 2 to 4 GB of

memory for midrange microprocessor systems, at which
point simple 32-bit addressing (4 GB) would get awkward.
Ideally, 64/32-bit CPUs would have started shipping
early enough (1992) to have made up the majority of the
relevant installed base before they were actually needed.
Then people could have switched to 64/32-bit operat-
ing systems and stopped upgrading 32-bit-only systems,
allowing a smooth transition. Vendors naturally varied in
their timing, but shipments ranged from “just barely in
time” to “rather late.” This is somewhat odd, considering
the long, well-known histories of insufficient address bits,
combined with the clear predictability of Moore’s law.
All too often, customers were unable to use memory they
could easily afford.

Some design decisions are easy to change, but others
create long-term legacies. Among those illustrated here
are the following:
• Some unfortunate decisions may be driven by real con-

straints (1970: PDP-11 16-bit).
• Reasonable-at-the-time decisions turn out in 20-year

retrospect to have been suboptimal (1976-77: usage of C
data types). Some better usage recommendations could
have saved a great deal of toil and trouble later.

• Some decisions yield short-term benefits but incur long-
term problems (1964: S/360 24-bit addresses).

• Predictable trends are ignored, or transition efforts
underestimated (1990s: 32 transitioning to 64/32 bits).

Constraints. Hardware people needed to build 64/32-
bit CPUs at the right time—neither too early (extra cost,

no market), nor too late (competition, angry customers).
Existing 32-bit binaries needed to run on upward-com-
patible 64/32-bit systems, and they could be expected to
coexist forever, because many would never need to be 64
bits. Hence, 32 bits could not be a temporary compatibil-
ity feature to be quickly discarded in later chips.

Software designers needed to agree on whole sets of
standards; build dual-mode operating systems, compilers,
and libraries; and modify application source code to work
in both 32- and 64-bit environments. Numerous details
had to be handled correctly to avoid redundant hardware
efforts and maintain software sanity.

Solutions. Although not without subtle problems,
the hardware was generally straightforward and not that
expensive—the first commercial 64-bit micro’s 64-bit data
path added at most 5 percent to the chip area, and this
fraction dropped rapidly in later chips. Most chips used
the same general approach of widening 32-bit registers
to 64 bits. Software solutions were much more complex,
involving arguments about 64/32-bit C, the nature of
existing software, competition/cooperation among ven-
dors, official standards, and influential but totally unof-
ficial ad hoc groups.

Legacies. The IBM S/360 is 40 years old and still
supports a 24-bit legacy addressing mode. The 64/32
solutions are at most 15 years old, but will be with
us, effectively, forever. In 5,000 years, will some soft-
ware maintainer still be muttering, “Why were they so
dumb?”1

We managed to survive the Y2K problem—with a lot
of work. We’re still working through 64/32. Do we have
any other problems like that? Are 64-bit CPUs enough to
help the “Unix 2038” problem, or do we need to be work-
ing harder on that? Will we run out of 64-bit systems, and
what will we do then? Will IPv6 be implemented widely
enough soon enough?

All of these are examples of long-lived problems for
which modest foresight may save later toil and trouble.
But software is like politics: Sometimes we wait until a
problem is really painful before we fix it.

PROBLEM: CPU MUST ADDRESS AVAILABLE MEMORY
Any CPU can efficiently address some amount of virtual
memory, done most conveniently by flat addressing in
which all or most of the bits in an integer register form
a virtual memory address that may be more or less than
actual physical memory. Whenever affordable physical
memory exceeds the easily addressable, it stops being
easy to throw memory at performance problems, and
programming complexity rises quickly. Sometimes, seg-

System
EvolutionFO

CU
S

THE
 LONG
 ROAD

 TO
64

 BITS

ACM QUEUE October 2006 27 more queue: www.acmqueue.com

mented memory schemes have been used with varying
degrees of success and programming pain. History is filled
with awkward extensions that added a few bits to extend
product life a few years, usually at the cost of hard work
by operating-system people.

Moore’s law has increased affordable memory for
decades. Disks have grown even more rapidly, especially
since 1990. Larger disk pointers are more convenient than
smaller ones, although less crucial than memory point-
ers. These interact when mapped files are used, rapidly
consuming virtual address space.

In the mid-1980s, some people started thinking about
64-bit micros—for example, the experimental systems
built by DEC (Digital Equipment Corporation). MIPS
Computer Systems decided by late 1988 that its next
design must be a true 64-bit CPU, and it announced the
R4000 in 1991. Many people thought MIPS was crazy or

at least premature. I thought the system came just barely
in time to develop software to match increasing DRAM,
and I wrote an article to explain why.2 The issues have
not changed very much since then.

N-bit CPU. By long custom, an N-bit CPU implements
an ISA (instruction set architecture) with N-bit integer
registers and N (or nearly N) address bits, ignoring sizes of
buses or floating-point registers. Many “32-bit” ISAs have
64- or 80-bit floating-point registers and implementations
with 8-, 16-, 32-, 64-, or 128-bit buses. Sometimes market-
ers have gotten this confused. I use the term 64/32-bit
here to differentiate the newer microprocessors from the
older 64-bit word-oriented supercomputers, as the soft-
ware issues are somewhat different. In the same sense, the
Intel 80386 might have been called a 32/16-bit CPU, as it
retained complete support for the earlier 16-bit model.

Why 2N-bits? People sometimes want wider-word
computers to improve performance for parallel bit opera-
tions or data movement. If you need a 2N-bit operation
(add, multiply, etc.), each can be done in one instruction
on a 2N-bit CPU, but longer sequences are required on an
N-bit CPU. These are straightforward low-level perfor-
mance issues. The typical compelling reason for wider
words, however, has been the need to increase address
bits, because code that is straightforward and efficient
with enough address bits may need global restructuring
to survive fewer bits.

Addressing—virtual and real—in a general-purpose
system. User virtual addresses are mapped to real memory
addresses, possibly with intervening page faults whereby
the operating system maps the needed code or data from
disk into memory. A user program can access at most VL
(virtual limit) bytes, where VL starts at some hardware
limit, then sometimes loses more space to an operating
system. For example, 32-bit systems easily have VLs of
4, 3.75, 3.5, or 2 GB. A given program execution uses at
most PM (program memory) bytes of virtual memory. For
many programs PM can differ greatly according to the
input, but of course PM ≤ VL.

The RL (real limit) is visible to the operating system
and is usually limited by the width of physical address
buses. Sometimes mapping hardware is used to extend
RL beyond a too-small “natural” limit (as happened in
PDP-11s, described later). Installed AM (actual memory) is
less visible to user programs and varies among machines
without needing different versions of the user program.

Most commonly, VL ≥ RL ≥ AM. Some programs burn
virtual address space for convenience and actually per-
form acceptably when PM >> AM: I’ve seen cases where
4:1 still worked, as a result of good locality. File mapping

MORE
Related articles in ACM’s Digital Library:

Bell, G., Strecker, W. D. 1998. Retrospective: what
have we learned from the PDP-11—what we have
learned from VAX and Alpha. In 25 Years of the
International Symposia on Computer Architecture
(selected papers) (August).

Coady, Y., Kiczales, G. 2003. Back to the future: a
retroactive study of aspect evolution in operating
system code. In Proceedings of the 2nd International
Conference on Aspect-oriented Software Development
(March).

Gifford, D., Spector, A. 1987. Case study: IBM’s
system/360-370 architecture. Communications of the
ACM 30(4).

Van der Hoek, A., Mikic-Rakic, M., Roshandel, R.,
Medvidovic, N. 2001. Taming architectural evolu-
tion. ACM SIGSOFT Software Engineering Notes 26(5).

 These articles will be available online at
 www.acmqueue.com for an eight-week
 period beginning Oct. 1. Want full access?
 Join ACM today at www.acm.org and
 sign up for the Digital Library.

28 October 2006 ACM QUEUE rants: feedback@acmqueue.com

can increase that ratio
further and still work. On
the other hand, some pro-
grams run poorly when-
ever PM > AM, confirming
the old proverb, “Virtual
memory is a way to sell
real memory.”

Sometimes, a computer
family starts with VL ≥ RL
≥ AM, and then AM grows,
and perhaps RL is increased
in ways visible only to the
operating system, at which
point VL << AM. A single
program simply cannot use
easily buyable memory,
forcing work to be split
and making it more dif-
ficult. For example, in
Fortran, the declaration

REAL X(M, M, M) is a three-dimensional array. If M=100,
X needs 4 MB, but people would like the same code to
run for M=1,000 (4 GB), or 6,300 (1,000 GB). A few such
systems do exist, although they are not cheap. I once had
a customer complain about lack of current support for
1,000 GB of real memory, although later the customer
was able to buy such a system and use that memory in
one program. After that, the customer complained about
lack of 10,000-GB support....

Of course, increasing AM in a multitasking system is
still useful in improving the number of memory-resident
tasks or reducing paging overhead, even if each task
is still limited by VL. Operating system code is always
simplified if it can directly and simply address all installed
memory without having to manage extra memory maps,
bank registers, etc.

Running out of address bits has a long history.

MAINFRAMES, MINICOMPUTERS, MICROPROCESSORS
The oft-quoted George Santayana is appropriate here:
“Those who cannot remember the past are condemned to
repeat it.”

Mainframes. IBM S/360 mainframes (circa 1964; see
accompanying Chronology sidebar) had 32-bit registers,
of which only 24 bits were used in addressing, for a limit
of 16 MB of core memory. This was considered immense
at the time. A “large” mainframe offered at most 1 MB
of memory, although a few “huge” mainframes could
provide 6 MB. Most S/360s did not support virtual

memory, so user programs generated physical addresses
directly, and the installed AM was partitioned among the
operating system and user programs. The 16-MB limit
was unfortunate, but ignoring (not trapping) the high-
order 8 bits was worse. Assembly language programmers
“cleverly” packed 8-bit flags with 24-bit addresses into
32-bit words.

As virtual addressing S/370s (1970) enabled programs
that were larger than physical memory allowed, and
as core gave way to DRAM (1971), the 16-MB limit
grew inadequate. IBM 370-XA CPUs (1983) added 31-
bit addressing mode, but retained a (necessary) 24-bit
mode for upward compatibility. I had been one of those
“clever” programmers and was somewhat surprised
to discover that a large program (the S/360 ASSIST
assembler) originally written in 1970 was still in use in
2006—in 24-bit compatibility mode, because it wouldn’t
run any other way. Compiler code that had been “clever”
had long since stopped doing this, but assembly code is
tougher. (“The evil that men do lives after them, the good
is oft interred with their bones.” —Shakespeare, again,
Julius Caesar)

Then, even 31-bit addressing became insufficient for
certain applications, especially databases. ESA/370 (1988)
offered user-level segmentation to access multiple 2-GB
regions of memory.

The 64-bit IBM zSeries (2001) still supports 24-bit
mode, 40-plus years later. Why did 24-bit happen? I’m
told that it was all for the sake of one low-cost early
model, the 360/30, where 32 bits would have run slower
because it had 8-bit data paths. These were last shipped
more than 30 years ago. Were they worth the decades of
extra headaches?

Minicomputers. In the 16-bit DEC PDP-11 mini-
computer family (1970), a single task addressed only 64
KB, or in later models (1973), 64 KB of instructions plus
64 KB of data. “The biggest and most common mistake
that can be made in computer design is that of not
providing enough address bits for memory addressing and
management,” C. Gordon Bell and J. Craig Mudge wrote
in 1978. “The PDP-11 followed this hallowed tradition of
skimping on address bits, but was saved on the principle
that a good design can evolve through at least one major
change. For the PDP-11, the limited address space was
solved for the short run, but not with enough finesse to
support a large family of minicomputers. This was indeed
a costly oversight.”3

To be fair, it would have been difficult to meet the
PDP-11’s cost goals with 32-bit hardware, but I think DEC
did underestimate how fast the price of DRAM memory

System
EvolutionFO

CU
S

THE
 LONG
 ROAD

 TO
64

 BITS

ACM QUEUE October 2006 29 more queue: www.acmqueue.com

 1964 IBM S/360: 32-bit, with 24-bit addressing (16 MB total) of real (core) memory.
 1968 Algol 68: includes long long.
 1970 DEC PDP-11/20: 16-bit, 16-bit addressing (64 KB total).
 IBM S/370 family: virtual memory, 24-bit addresses, but multiple user address spaces allowed.
 1971 IBM 370/145: main memory no longer core, but DRAM, 1 Kbit/chip.
 1973 DEC PDP-11/45: separate instruction+data (64 KI + 64 KD); 248 KB maximum real memory.
 Unix: PDP-11/45, operating system rewritten in C; IP16.
 C: integer data types: int, char; C on other machines (36-bit Honeywell 6000, IBM 370, others).
 1975 Unix: sixth edition, 24-bit maximum file size (16 MB).
 1976 DEC PDP-11/70: (64 KI + 64 KD), but larger physical memory (a huge 4 MB).
 C: short, long added (partly from doing C for XDS Sigma, although long was 64 bits there).
 1977 Unix: ported to 32-bit Interdata 8/32.
 C: unsigned, typedef, union; 32-bit long used to replace int[2] in lseek, tell on 16-bit PDP-11; IP16L32.
 DEC VAX-11/780: 32-bit, 32-bit addressing (4 GB total, 2 GB per user process).
 C: PDP-11: I16LP32; VAX (other 32-bitters): ILP32.
 1978 Unix: 32V for VAX-11/780; C is ILP32.
 C: The C Programming Language, Brian Kernighan and Dennis Ritchie (Prentice-Hall).
 Intel 8086: 16-bit, but with user-visible segmentation.
 1979 Motorola MC68000: 32-bit ISA, but 24-bit addressing (e.g., S/360).
 1982 C: I16LP32 on MC68000 in Bell Labs Blit terminal.
 Intel 80286: allows 16 MB of real memory, but restrictions keep most systems at 1 MB.
 1983 IBM 370/XA: adds 31-bit mode for user programs; 24-bit mode still supported.
 C: Unix workstations generally use ILP32, following Unix on VAX systems.
 1984 Motorola MC68020: 32-bit; 32- bit addressing.
 C: Amdahl UTS (32-bit S/370) uses long long, especially for large file pointers.
 C: Convex (64-bit vector mini-supercomputer) uses long long for 64-bit integers.
 1986 Intel: 80386, 32-bit, with support for 8086 mode.
 1987 Apple Mac II: MC68020’s 32-bit addressing causes trouble for some MC68000 software.
 1988 IBM ESA/370: multiple 31-bit address spaces per user, although complex; 24-bit still there.
 1989 ANSI C (“C89”): effort had started in 1983, ANSI X3J11.
 1992 SGI: ships first 64-bit micro (MIPS R4000); still running 32-bit operating system.
 64-bit C working group: discusses various models (LP64, ILP64, LLP64), with little agreement.
 DEC: ships 64-bit Alpha systems, running 64-bit operating system; LP64.
 1994 SGI: ships IRIX 6 (64/32 operating system; ILP32LL + LP64) on Power Challenge; customers buy 4 GB+ memory, use it.
 DEC: ships 4 GB+ in DEC 7000 SMPs (may have been slightly earlier).
 1995 Sun UltraSPARC: 64/32-bit hardware, 32-bit-only operating system.
 HAL Computer’s SPARC64: uses ILP64 model for C.
 Large file summit: codifies 64-bit interface to files >2 GB, even in 32-bit systems (ILP32LL+LP64).
 Aspen group: supports LP64 model for C so that Unix vendors are consistent.
 1996 HP: announces PA-RISC 2.0, 64-bit.
 1997 HP: UP/UX 11.0 is 64/32-bit OS; ILP32LL + LP64.
 IBM: RS64 PowerPC, AIX 4.3; ILP32LL + LP64.
 1998 Sun: 64/32 Solaris 7 released; ILP32LL + LP64.
 1999 C: ISO/IEC C (WG14’s “C99”); includes long long, at least 64 bits.
 2001 IBM: 64-bit zSeries (S/360 descendant); 24-bit addressing still supported.
 Intel: 64-bit Itanium.
 2002 Microsoft: Windows 64-bit for Itanium.
 2003 AMD: 64-bit X86 (now called AMD64).
 2004 Intel: 64-bit X86 (called EMT64), compatible with AMD.
 2005 Microsoft: Windows XP Professional x64 for X86; LLP64 (or IL32LLP64).

Chronology: Multiple Interlocking Threads

30 October 2006 ACM QUEUE rants: feedback@acmqueue.com

would fall. In any case,
this lasted a long time—
the PDP-11 was finally
discontinued in 1997!

The PDP-11/70 (1976)
raised the number of
supportable concurrent
tasks, but any single
program could still use
only 64 KI (instruction)
+ 64 KD (data) of a
maximum of 4 MB, so that
individual large programs
required unnatural acts
to split code and data
into 64 KB pieces. Some
believed this encouraged
modularity and inhibited
“creeping featurism”
and was therefore
philosophically good.

Although the 32-bit VAX-11/780 (1977) was only
moderately faster than the PDP-11/70, the increased
address space was a major improvement that ended the
evolution of high-end PDP-11s. VAX architect William
Strecker explained it this way: “However, there are some
applications whose programming is impractical in a 65-
KB address space, and perhaps more importantly, others
whose programming is appreciably simplified by having a
large address space.”4

Microprocessors. The Intel 8086’s 16-bit ISA seemed
likely to fall prey to the PDP-11’s issues (1978). It did
provide user-mode mechanisms for explicit segment
manipulation, however. This allowed a single program
to access more than 64 KB of data. PC programmers
were familiar with the multiplicity of memory models,
libraries, compiler flags, extenders, and other artifacts
once needed. The 80386 provided 32-bit flat addresses
(1986), but of course retained the earlier mechanisms,
and 16-bit PC software lasted “forever.” The intermediate
80286 (1982) illustrated the difficulty of patching an
architecture to get more addressing bits.

The 32-bit Motorola MC68000 (1979) started with a
flat-addressing programming model. By ignoring the high
8 bits of a 32-bit register, it exactly repeated the S/360
mistake. Once again, “clever” programmers found uses
for those bits, and when the MC68020 (1984) interpreted
all 32, some programs broke—for example, when moving
from the original Apple Macintosh to the Mac II (1987).

Fortunately, 64-bit CPUs managed to avoid repeating

the S/360 and MC68000 problem. Although early
versions usually implemented 40 to 44 virtual address
bits, they trapped use of not-yet-implemented high-
order v bits, rather than ignoring them. People do learn,
eventually.

LESSONS
• Even in successful computer families created by top
architects, address bits are scarce and are totally con-
sumed sooner or later.
• Upward compatibility is a real constraint, and
thinking ahead helps. In the mainframe case, a 24-
bit “first-implementation artifact” needed hardware/
software support for 40-plus years. Then a successful
minicomputer family’s evolution ended prematurely.
Finally, microprocessors repeated the earlier mistakes,
although the X86’s segmentation allowed survival long
enough to get flat-address versions.

THE 32- TO 64-BIT PROBLEM IN THE LATE 1980S
By the late ’80s, Moore’s law seemed cast in silicon, and
it was clear that by 1993-94, midrange microprocessor
servers could cost-effectively offer 2-4 GB or more of
physical memory. We had seen real programs effectively
use as much as 4:1 more virtual memory than installed
physical memory, which meant pressure in 1993-94, and
real trouble by 1995. As I wrote in BYTE in September
1991:5

“The virtual addressing scheme often can exceed the
limits of possible physical addresses. A 64-bit address can
handle literally a mountain of memory: Assuming that
1 megabyte of RAM requires 1 cubic inch of space (using
4-megabit DRAM chips), 2**64 bytes would require a
square mile of DRAM piled more than 300 feet high! For
now, no one expects to address this much DRAM, even
with next-generation 16-MB DRAM chips, but increasing
physical memory slightly beyond 32 bits is definitely a
goal. With 16-MB DRAM chips, 2**32 bytes fits into just
over 1 cubic foot (not including cooling)—feasible for
deskside systems….

“Database systems often spread a single file across
several disks. Current SCSI disks hold up to 2 gigabytes
(i.e., they use 31-bit addresses). Calculating file locations
as virtual memory addresses requires integer arithmetic.
Operating systems are accustomed to working around
such problems, but it becomes unpleasant to make
workarounds; rather than just making things work well,
programmers are struggling just to make something
work…. ”

So, people started to do something about the problem.

System
EvolutionFO

CU
S

THE
 LONG
 ROAD

 TO
64

 BITS

ACM QUEUE October 2006 31 more queue: www.acmqueue.com

SGI (Silicon Graphics). Starting in early 1992, all new
SGI products used only 64/32-bit chips, but at first they
still ran a 32-bit operating system. In late 1994, a 64/32-
bit operating system and compilers were introduced for
large servers, able to support both 32-bit and 64-bit user
programs. This software worked its way down the product
line. A few customers quickly bought more than 4 GB
of memory and within a day had recompiled programs
to use it, in some cases merely by changing one Fortran
parameter. Low-end SGI workstations, however, con-
tinued to ship with a 32-bit-only operating system for
years, and of course, existing 32-bit hardware had to be

supported—for years. For historical reasons, SGI had more
flavors of 32-bit and 64-bit instruction sets than were
really desirable, so it was actually worse than having just
two of them.

This is the bad kind of “long tail”—people focus on
“first ship dates,” but often the “last ship date” matters
more, as does the “last date on which we will release a
new version of an operating system or application that
can run on that system.” Windows 16-bit applications
still run on regular Windows XP 20 years after the 80386
was introduced. Such support has finally been dropped in
Windows XP x64.

DEC. DEC shipped 64-bit Alpha systems in late 1992,
with a 64-bit operating system, and by late 1994 was ship-
ping servers with memories large enough to need greater
than 32-bit addressing. DEC might have requested (easy)
32-bit ports, but thinking long term, it went straight to
64-bit, avoiding duplication. It was expensive in time and

money to get third-party software 64-bit clean, but it was
valuable to the industry as it accelerated the 64-bit clean-
up. DEC was probably right to do this, since it had no
installed base of 32-bit Alpha programs and could avoid
having to support two modes. For VMS, early versions
were 32-bit, and later ones 64/32-bit.

Other vendors. Over the next few years, many vendors
shipped 64-bit CPUs, usually running 32-bit software, and
later 64/32-bit: Sun UltraSPARC (1995), HAL SPARC64
(1995), PA-RISC (1996), HP/UX 11.0 (1997), IBM RS64
and AIX 4.3 (1997), Sun Solaris 7 (1998), IBM zSeries
(2001), Intel Itanium (2001), AMD AMD64 (2003), Intel
EMT64a (2004), Microsoft Windows XP x64 (2005). Linux
64-bit versions appeared at various times.

Most 64-bit CPUs were designed as extensions of
existing 32-bit architectures that could run existing 32-
bit binaries well, usually by extending 32-bit registers
to 64 bits in 64-bit mode, but ignoring the extra bits in
32-bit mode. The long time span for these releases arises
from natural differences in priorities. SGI was especially
interested in high-performance technical computing,
whose users were accustomed to 64-bit supercomput-
ers and could often use 64 bits simply by increasing one
array dimension in a Fortran program and recompiling.
SGI and other vendors of large servers also cared about
memory for large database applications. It was certainly
less important to X86 CPU vendors whose volume was
dominated by PCs. In Intel’s case, perhaps the emphasis
on Itanium delayed 64-bit X86s.

In 2006, 4 GB of DRAM, consisting of 1-GB DRAMs,
typically uses four DIMMs and can cost less than $400.
At least some large notebooks support 4 GB, and 300-GB
disks are widely available for less than $1 per gigabyte, so
one would expect mature, widespread support for 64 bits
by now. All this took longer than perhaps it should have,
however, and there have been many years where people
could buy memory but not be able to address it conve-
niently, or not be able to buy some third-party applica-
tion that did, because such applications naturally lag
64-bit CPUs. It is worth understanding why and how this
happened, even though the impending issue was surely
well known.

LESSONS
• For any successful computer family, it takes a very long
time to convert an installed base of hardware, and soft-
ware lasts even longer.
• Moving from 32 to 64/32 bits is a long-term coexistence
scenario. Unlike past transitions, almost all 64-bit CPUs
must run compatible existing 32-bit binaries without

For any successful
computer family it takes
a very long time to convert
an installed base of hardware,
and software lasts even longer.

32 October 2006 ACM QUEUE rants: feedback@acmqueue.com

translation, since much of
the installed base remains
32-bit, and many 32-bit
programs are perfectly
adequate and can remain
so indefinitely.

SOFTWARE IS HARDER:
OPERATING SYSTEM,
COMPILERS, APPLICA-
TIONS, USERS, STANDARDS
Building a 64-bit CPU
is not enough. Embed-
ded-systems markets can
move more easily than
general-purpose markets,
as happened, for example,
with Cisco routers and
Nintendo N64s that used
64-bit MIPS chips. Vendors
of most 32-bit systems,

however, had to make their way through all of the fol-
lowing steps to produce useful upward-compatible 64-bit
systems:
1. Ship systems with 64/32-bit CPUs, probably running
in 32-bit mode. Continue supporting 32-bit-only CPUs
as long as they are shipped and for years thereafter (often
five or more years). Most vendors did this, simply because
software takes time.
2. Choose a 64-bit programming model for C, C++, and
other languages. This involves discussion with standards
bodies and consultation with competitors. There may be
serious consequences if you select a different model from
most of your competitors. Unix vendors and Microsoft
did choose differently, for plausible reasons. Think hard
about inter-language issues—Fortran expects INTEGER
and REAL to be the same size, which makes 64-bit default
integers awkward.
3. Clean up header files, carefully.
4. Build compilers to generate 64-bit code. The compilers
themselves almost certainly run in 32-bit mode and cross-
compile to 64-bit, although occasional huge machine-
generated programs can demand compilers that run in
64-bit mode. Note that programmer sanity normally
requires a bootstrap step here, in which the 32-bit com-
piler is first modified to accept 64-bit integers and then is
recoded to use them itself.
5. Convert the operating system to 64-bit, but with 32-bit
interfaces as well, to run both 64- and 32-bit applications.
6. Create 64-bit versions of all system libraries.

7. Ship the new operating system and compilers on new
64-bit hardware, and hopefully, on the earlier 64-bit
hardware that has now been shipping for a while. This
includes supporting (at least) two flavors of every library.
8. Talk third-party software vendors into supporting a
64-bit version of any program for which this is relevant.
Early in such a process, the installed base inevitably
remains mostly 32-bit, and software vendors consider the
potential market size versus the cost of supporting two
versions on the same platform. DEC helped the industry
fix 32- to 64-bit portability issues by paying for numerous
64-bit Alpha ports.
9. Stop shipping 32-bit systems (but continue to support
them for many years).
10. Stop supporting 32-bit hardware with new operating
system releases, finally.

Going from step 1 to step 6 typically took two to three
years, and getting to step 9 took several more years. The
industry has not yet completed step 10.

Operating system vendors can avoid step 1, but oth-
erwise, the issues are similar. Many programs need never
be converted to 64-bit, especially since many operating
systems already support 64-bit file pointers for 32-bit
programs.

The next section traces some of the twists and turns
that occurred in the 1990s, especially involving the
implementation of C on 64/32-bit CPUs. This topic gen-
erated endless and sometimes vituperative discussions.
Interested readers should consult references 6-9. Mas-
ochistic readers might search newsgroup comp.std.c for
“64-bit” or “long long”.

C: 64-BIT INTEGERS ON 64/32-BIT CPUS—
TECHNOLOGY AND POLITICS
People have used various (and not always consistent)
notations to describe choices of C data types. In table 1,
the first label of several was the most common, as far as I
can tell. On machines with 8-bit char, short is usually 16
bits, but other data types can vary. The common choices
are shown in table 1.

Early days. Early C integers (1973) included only int
and char; then long and short were added by 1976, fol-
lowed by unsigned and typedef in 1977. In the late 1970s,
the installed base of 16-bit PDP-11s was joined by newer
32-bit systems, requiring that source code be efficient,
sharable, and compatible between 16-bit systems (using
I16LP32) and 32-bitters (ILP32), a pairing that worked
well. PDP-11s still employed (efficient) 16-bit int most
of the time, but could use 32-bit long as needed. The 32-
bitters used 32-bit int most of the time, which was more

System
EvolutionFO

CU
S

THE
 LONG
 ROAD

 TO
64

 BITS

ACM QUEUE October 2006 33 more queue: www.acmqueue.com

efficient, but could express 16-bit via short. Data struc-
tures used to communicate among machines avoided int.
It was very important that 32-bit long be usable on the
PDP-11. Before that, the PDP-11 needed explicit functions
to manipulate int[2] (16-bit int pairs), and such code was
not only awkward, but also not simply sharable with 32-
bit systems. This is an extremely important point—long
was not strictly necessary for 32-bit CPUs, but it was very
important to enable code sharing among 16- and 32-bit
environments. We could have gotten by with char, short,

and int, if all our systems had been 32 bits.
It is important to remember the nature of C at this

point. It took a while for typedef to become a common
idiom. With 20/20 hindsight, it might have been wise to
have provided a standard set of typedefs to express “fast
integer,” “guaranteed to be exactly N-bit integer,” “integer
large enough to hold a pointer,” etc., and to have recom-
mended that people build their own typedefs on these
definitions, rather than base types. If this had been done,
perhaps much toil and trouble could have been avoided.

This would have been very countercultural, however,
and it would have required astonishing precognition.
Bell Labs already ran C on 36-bit CPUs and was working
hard on portability, so overly specific constructs such
as “int16” would have been viewed with disfavor. C
compilers still had to run on 64 KI + 64 KD PDP-11s, so
language minimality was prized. The C/Unix community
was relatively small (600 systems) and was just starting to
adapt to the coming 32-bit minicomputers. In late 1977,
the largest known Unix installation had seven PDP-11s,

with a grand total of 3.3 MB of memory and 1.9 GB of
disk space. No one could have guessed how pervasive C
and its offshoots would become, and thinking about 64-
bit CPUs was not high on the list of issues.

32-bit happy times. In the 1980s, ILP32 became the
norm, at least in Unix-based systems. These were happy
times: 32-bit was comfortable enough for buyable DRAM
for many years. In retrospect, however, it may have
caused some people to get sloppy in assuming:
sizeof(int) == sizeof(long) == sizeof(ptr) == 32.

Sometime around 1984, Amdahl UTS and Convex
added long long for 64-bit integers, the former on a 32-bit
architecture, the latter on a 64-bitter. UTS used this espe-
cially for long file pointers, one of the same motivations
for long in PDP-11 Unix (1977). Algol 68 inspired long
long in 1968, and it was also added to GNU C at some
point. Many reviled this syntax, but at least it consumed
no more reserved keywords.

Of course, 16-bit int was used on Microsoft DOS and
Apple Macintosh systems, given the original use of Intel
8086 or MC68000, where 32-bit int would have been
costly, particularly on early systems with 8- or 16-bit
data paths and where low memory cost was especially
important.

64-bit heats up in 1991/1992. The MIPS R4000 and
DEC Alpha were announced in the early 1990s. E-mail
discussions were rampant among various companies
during 1990-92 regarding the proper model for 64-bit C,
especially when implemented on systems that would still
run 32-bit applications for many years. Quite often, such

Common C Data Types

*In these cases, LP64 and ILP64 offer 64-bit integers, and long long seems redundant, but in practice, most proponents of LP64
and ILP64 included long long as well, for reasons given later. ILP64 uniquely required a new 32-bit type, usually called _int32.

TABLE 1
int long ptr long long Label Examples

16 -- 16 -- IP16 PDP-11 Unix (early, 1973)

16 32 16 -- IP16L32 PDP-11 Unix (later, 1977); multiple instructions for long

16 32 32 -- I16LP32 Early MC68000 (1982); Apple Macintosh 68K
Microsoft operating systems (plus extras for X86 segments)

32 32 32 -- ILP32 IBM 370; VAX Unix; many workstations

32 32 32 64 ILP32LL or
ILP32LL64

Amdahl; Convex; 1990s Unix systems
Like IP16L32, for same reason; multiple instructions for long long.

32 32 64 64 LLP64 or IL32LLP64 or P64 Microsoft Win64

32 64 64 *(64) LP64 or I32LP64 Most 64/32 Unix systems

64 64 64 *(64) ILP64 HAL; logical analog of ILP32

34 October 2006 ACM QUEUE rants: feedback@acmqueue.com

informal cooperation exists
among engineers working
for otherwise fierce com-
petitors.

In mid-1992 Steve Ches-
sin of Sun initiated an
informal 64-bit C working
group to see if vendors
could avoid implement-
ing randomly different
64-bit C data models and
nomenclatures. Systems
and operating system ven-
dors all feared the wrath of
customers and third-party
software vendors other-
wise. DEC had chosen
LP64 and was already far
along, as Alpha had no
32-bit version. SGI was
shipping 64-bit hardware

and working on 64-bit compilers and operating system; it
preferred LP64 as well. Many others were planning 64-bit
CPUs or operating systems and doing portability studies.

Chessin’s working group had no formal status, but had
well-respected senior technologists from many systems
and operating system vendors, including several who
were members of the C Standards Committee. With all
this brainpower, one might hope that one clear answer
would emerge, but that was not to be. Each of the three
proposals (LLP64, LP64, and ILP64) broke different kinds
of code, based on the particular implicit assumptions
made in the 32-bit happy times.

Respected members of the group made credible pre-
sentations citing massive analyses of code and porting
experience, each concluding, “XXX is the answer.” Unfor-
tunately, XXX was different in each case, and the group
remained split three ways. At that point I suggested we
perhaps could agree on header files that would help pro-
grammers survive (leading to <inttypes.h>). Most people
did agree that long long was the least bad of the alterna-
tive notations and had some previous usage.

We worried that we were years ahead of the forth-
coming C standard but could not wait for it, and the C
Standards Committee members were supportive. If we
agreed on anything reasonable, and it became widespread
practice, it would at least receive due consideration. Like
it or not, at that point this unofficial group probably
made long long inevitable—or perhaps that inevitability
dated from 1984.

By 1994, DEC was shipping large systems and had
paid for many third-party software ports, using LP64. SGI
was also shipping large systems, which supported both
ILP32LL and LP64, with long long filling the role handled
by long in the late 1970s.

The DEC effort proved that it was feasible to make
much software 64-bit-clean without making it 32-bit
unclean. The SGI effort proved that 32-bit and 64-bit
programs could be sensibly supported on one system,
with reasonable data interchange, a requirement for most
other vendors. In practice, that meant that one should
avoid long in structures used to interchange data, exactly
akin to the avoidance of int in the PDP-11/VAX days.
About this time in 1995 the Large File Summit agreed on
Unix APIs to increase file size above 2 GB, using long long
as a base data type.

Finally, the Aspen Group in 1995 had another round
of discussions about the 64-bit C model for Unix and set-
tled on LP64, at least in part because it had been proved
to work and most actual 64-bit software used LP64.

During the 1992 meetings of the 64-bit C group,
Microsoft had not yet chosen its model, but later chose
LLP64, not the LP64 preferred by Unix vendors. I was told
that this happened because the only 32-bit integer type
in PCs was long; hence, people often used long to mean
32-bit more explicitly than in Unix code. That meant that
changing its size would tend to break more code than in
Unix. This seemed plausible. Every choice broke some
code; thus, people looked at their own code bases, which
differed, leading to reasonable differences of opinion.

Many people despised long long and filled newsgroups
with arguments against it, even after it became incor-
porated into the next C standard in 1999. The official
rationale for the C standard can be consulted by anyone
who wants to understand the gory details.6

Differing implicit assumptions about the sizes of vari-
ous data types had grown up over the years and caused
a great deal of confusion. If we could go back to 1977,
knowing what we know now, we could have made all
this easier simply by insisting on more consistent use of
typedef. In 1977, however, it would have been hard to
think ahead 20 years to 64-bit micros—we were just get-
ting to 32-bit minis!

This process might also have been eased if more ven-
dors had been further along in 64-bit implementations
in 1992. Many people had either forgotten the lessons of
the PDP-11/VAX era or had not been involved then. In
any case, the 64/32 systems had a more stringent require-
ment: 64-bit and 32-bit programs would coexist forever in
the same systems.

System
EvolutionFO

CU
S

THE
 LONG
 ROAD

 TO
64

 BITS

ACM QUEUE October 2006 35 more queue: www.acmqueue.com

LESSONS
• Standards often get created in nonstandard ways, and
often, de facto standards long precede official ones.
• Reasonable people can disagree, especially when looking
at different sets of data.
• Sometimes one has to work with competitors to make
anything reasonable happen.
• Programmers take advantage of extra bits or ambiguity
of specification. Most arguments happen because applica-
tion programmers make differing implicit assumptions.
• Code can be recompiled, but once data gets written
somewhere, any new code must still be able to describe it
cleanly. Current software is rarely done from scratch but
has to exist inside a large ecosystem.
• We might never build 128-bit computers, but it would
probably be good to invent a notation for 128-bit inte-
gers, whose generated code on 64-bit CPUs is about the
same as 64-bit code is on 32-bit CPUs. It would be nice
to do that long before it is really needed. In general, pre-
dictable long-term problems are most efficiently solved
with a little planning, not with frenzied efforts when the
problem is imminent. Fortunately, 128-bitters are many
years away, if ever (maybe 2020-2040), because we’ve just
multiplied our addressing size by 4 billion, and that will
last a while, even if Moore’s law continues that long! In
case 128-bit happens in 2020, however, it would be wise
to be thinking about the next integer size around 2010.

Of course, when the S/360 was introduced, IBM and
other vendors had 36- and 18-bit product lines. In an
alternate universe, had the S/360 been a 36-bit archi-
tecture with four 9-bit bytes/word, most later machines
would have been 18- and 36-bit, and we would just be
starting the 36-bit to 72-bit transition.
• Hardware decisions last a long time, but software deci-
sions may well last longer. If you are a practicing pro-
grammer, take pity on those who end up maintaining
your code, and spend some time thinking ahead. Allow
for natural expansion of hardware, hide low-level details,
and use the highest-level languages you can. C’s ability to
make efficient use of hardware can be both a blessing and
a curse.

CONCLUSIONS
Some decisions last a very long time. The 24-bit address-
ing of 1964’s S/360 is still with us, as are some side effects
of C usage in the mid-1970s. The transition to 64-bit
probably took longer than it needed for a host of reasons.
It’s too bad that people quite often have been unable to
use affordable memory for solving performance problems
or avoiding cumbersome programming.

It’s too bad there has been so much toil and trouble,
but at least people have stopped arguing about whether
there should be 64-bit micros or not. Q

REFERENCES
1. Mashey, J. 2004-05. Languages, levels, libraries, longev-

ity. ACM Queue 2 (9): 32-38.
2. Mashey, J. 1991. 64-bit computing. BYTE (September):

135-142. The complete text can be found by searching
Google Groups comp.arch: Mashey BYTE 1991.

3. Bell, C. G., Mudge, J. C. 1978. The evolution of the
PDP-11. In Computer Engineering: A DEC View of Com-
puter System Design, ed. C. Gordon Bell, J. Craig Mudge,
and John E. McNamara. Bedford, MA: Digital Press.

4. Strecker, W. D. 1978. VAX-11/780: A virtual address
extension to the DEC PDP-11 family. In Computer Engi-
neering: A DEC View of Computer System Design, ed. C.
Gordon Bell, J. Craig Mudge, and John E. McNamara.
Bedford, MA: Digital Press.

5. See reference 2.
6. Rationale for International Standard—Programming

Languages—C; http://www.open-std.org/jtc1/sc22/
wg14/www/docs/n897.pdf (or other sites).

7. Aspen Data Model Committee. 1997-1998. 64-bit
programming models: Why LP64? http://www.unix.
org/version2/whatsnew/lp64_wp.html.

8. Josey, A. 1997. Data size neutrality and 64-bit support;
http://www.usenix.org/publications/login/
standards/10.data.html.

9. Adding support for arbitrary file sizes to the single Unix
specification; http://www.unix.org/version2/whatsnew/
lfs20mar.html.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

JOHN MASHEY is a consultant for venture capitalists and
technology companies, sits on various technology advisory
boards of startup companies, and is a trustee of the Com-
puter History Museum. He spent 10 years at Bell Laborato-
ries, working on the Programmer’s Workbench version of
Unix. He later managed development of Unix-based applica-
tions and software development systems. After Bell Labs, he
was one of the designers of the MIPS RISC architecture, one
of the founders of the SPEC benchmarking group, and chief
scientist at Silicon Graphics. His interests have long included
interactions between hardware and software. He received
a B.S. in mathematics, and M.S. and Ph.D. in computer sci-
ence from Pennsylvania State University.
© 2006 ACM 1542-7730/06/1000 $5.00

