Pseudocode for Insertion into 8 Red-Black Tree

enum COLOR { rbRED, rbBLACK };
struct RBNode

RBNode *left;
RBNode *right;
RBNode *parent;
COLOR color;
void *item;

¥

RBInsert (Root node of RBTree, Item to insert)

{
RBNode *X = node, *Y;
Insert new node into RBTree in usual manner (it's a BST)
Set new neode's color to RED and call it X

// The Red/Black property may have been destroyed
// so we have to restore it
while (X is not the Root) and (X's Parent is RED)

{

if (X's Parent is a LEFT child)

{
// If X's Parent is a LEFT, Uncle must be a RIGHT
Set Y to X's Uncle (Uncle is Grandparent's RIGHT child)
if (Y is RED)

// Case #1, Change the tri-node's colors
Set X's Parent's color to BLACK
Set Y's color to BLACK
Set X's Grandparent's color to RED
Set X to Grandparent

else // Y is BLACK

// and X is RIGHT, Case #2
// move X up and rotate it (rotates child into Parent's spot)

if (X is a RIGHT child)

Set X to Parent
Rotate LEFT about new X

// Case #3
Set X's Parent's color to BLACK
Set X's Grandparent's color toc RED
Rotate RIGHT about X's Grandparent;

}

else // X's Parent is a RIGHT child (symmetrical to above code)
{
// If X's Parent is a RIGHT, Uncle must be a LEFT
Set Y to X's Uncle (Uncle is Grandparent's LEFT child)
if (Y is RED)

{
// Case #1, Change the tri-node's colors
Set X's Parent's color to BLACK
Set Y's color to BLACK
Set X's Grandparent's color to RED
Set X to Grandparent

}

else

{

// and X is LEFT, Case #2

// move X up and rotate it (rotates child into Parent's spot)
if (X is a LEFT child)
{

Set X to Parent

Rotate RIGHT about new X

// Case #3
Set X's Parent's color to BLACK
Set X's Grandparent's color to RED
Rotate LEFT about X's Grandparent;



Red-Black Transformation #1




