
Skip Lists: A Probabilistic Alternative to
Balanced Trees

 Skip lists are a data structure that can be used in place of balanced trees.
Skip lists use probabilistic balancing rather than strictly enforced balancing
and as a result the algorithms for insertion and deletion in skip lists are
much simpler and significantly faster than equivalent algorithms for
balanced trees.

William Pugh

Binary trees can be used for representing abstract data types
such as dictionaries and ordered lists. They work well when
the elements are inserted in a random order. Some sequences
of operations, such as inserting the elements in order, produce
degenerate data structures that give very poor performance. If
it were possible to randomly permute the list of items to be in-
serted, trees would work well with high probability for any in-
put sequence. In most cases queries must be answered on-line,
so randomly permuting the input is impractical. Balanced tree
algorithms re-arrange the tree as operations are performed to
maintain certain balance conditions and assure good perfor-
mance.

Skip lists are a probabilistic alternative to balanced trees.
Skip lists are balanced by consulting a random number gen-
erator. Although skip lists have bad worst-case performance,
no input sequence consistently produces the worst-case per-
formance (much like quicksort when the pivot element is cho-
sen randomly). It is very unlikely a skip list data structure will
be significantly unbalanced (e.g., for a dictionary of more
than 250 elements, the chance that a search will take more
than 3 times the expected time is less than one in a million).
Skip lists have balance properties similar to that of search
trees built by random insertions, yet do not require insertions
to be random.

Balancing a data structure probabilistically is easier than
explicitly maintaining the balance. For many applications,
skip lists are a more natural representation than trees, also
leading to simpler algorithms. The simplicity of skip list algo-
rithms makes them easier to implement and provides signifi-
cant constant factor speed improvements over balanced tree
and self-adjusting tree algorithms. Skip lists are also very
space efficient. They can easily be configured to require an
average of 1 1/3 pointers per element (or even less) and do not
require balance or priority information to be stored with each
node.

SKIP LISTS
We might need to examine every node of the list when search-
ing a linked list (Figure 1a). If the list is stored in sorted order
and every other node of the list also has a pointer to the node
two ahead it in the list (Figure 1b), we have to examine no
more than n/2 + 1 nodes (where n is the length of the list).

Also giving every fourth node a pointer four ahead (Figure
1c) requires that no more than n/4 + 2 nodes be examined.
If every (2i)th node has a pointer 2i nodes ahead (Figure 1d),
the number of nodes that must be examined can be reduced to
log2 n while only doubling the number of pointers. This
data structure could be used for fast searching, but insertion
and deletion would be impractical.

A node that has k forward pointers is called a level k node.
If every (2i)th node has a pointer 2i nodes ahead, then levels
of nodes are distributed in a simple pattern: 50% are level 1,
25% are level 2, 12.5% are level 3 and so on. What would
happen if the levels of nodes were chosen randomly, but in the
same proportions (e.g., as in Figure 1e)? A node’s ith forward
pointer, instead of pointing 2i–1 nodes ahead, points to the
next node of level i or higher. Insertions or deletions would
require only local modifications; the level of a node, chosen
randomly when the node is inserted, need never change. Some
arrangements of levels would give poor execution times, but
we will see that such arrangements are rare. Because these
data structures are linked lists with extra pointers that skip
over intermediate nodes, I named them skip lists.

SKIP LIST ALGORITHMS
This section gives algorithms to search for, insert and delete
elements in a dictionary or symbol table. The Search opera-
tion returns the contents of the value associated with the de-
sired key or failure if the key is not present. The Insert opera-
tion associates a specified key with a new value (inserting the
key if it had not already been present). The Delete operation
deletes the specified key. It is easy to support additional oper-
ations such as “find the minimum key” or “find the next key”.

Each element is represented by a node, the level of which
is chosen randomly when the node is inserted without regard
for the number of elements in the data structure. A level i
node has i forward pointers, indexed 1 through i. We do not
need to store the level of a node in the node. Levels are
capped at some appropriate constant MaxLevel. The level of a
list is the maximum level currently in the list (or 1 if the list is
empty). The header of a list has forward pointers at levels one
through MaxLevel. The forward pointers of the header at
levels higher than the current maximum level of the list point
to NIL.

a

b

c

d

e

25

3 6 7 9 12 17 19 21 25 26

3 6 7 9 12 17 19 21 25 26

3 6 7

9

12
17

19

21

25
26

3
6

7

9

12
17

19

21

26

3

6

7
9

12
17

19 21

25

26

NIL

NIL

NIL

NIL

NIL

FIGURE 1 - Linked lists with additional pointers

Search(list, searchKey)
x := list→header
-- loop invariant: x→key < searchKey
for i := list→level downto 1 do

while x→forward[i]→key < searchKey do
x := x→forward[i]

-- x→key < searchKey ≤ x→forward[1]→key
x := x→forward[1]
if x→key = searchKey then return x→value

else return failure

FIGURE 2 - Skip list search algorithm

Initialization
An element NIL is allocated and given a key greater than any
legal key. All levels of all skip lists are terminated with NIL.
A new list is initialized so that the the level of the list is equal
to 1 and all forward pointers of the list’s header point to NIL.
Search Algorithm
We search for an element by traversing forward pointers that
do not overshoot the node containing the element being
searched for (Figure 2). When no more progress can be made
at the current level of forward pointers, the search moves
down to the next level. When we can make no more progress
at level 1, we must be immediately in front of the node that
contains the desired element (if it is in the list).
Insertion and Deletion Algorithms
To insert or delete a node, we simply search and splice, as
shown in Figure 3. Figure 4 gives algorithms for insertion and
deletion. A vector update is maintained so that when the
search is complete (and we are ready to perform the splice),
update[i] contains a pointer to the rightmost node of level i or
higher that is to the left of the location of the inser-
tion/deletion.

If an insertion generates a node with a level greater than

the previous maximum level of the list, we update the maxi-
mum level of the list and initialize the appropriate portions of
the update vector. After each deletion, we check if we have
deleted the maximum element of the list and if so, decrease
the maximum level of the list.
Choosing a Random Level
Initially, we discussed a probability distribution where half of
the nodes that have level i pointers also have level i+1 point-
ers. To get away from magic constants, we say that a fraction
p of the nodes with level i pointers also have level i+1 point-
ers. (for our original discussion, p = 1/2). Levels are generated
randomly by an algorithm equivalent to the one in Figure 5.
Levels are generated without reference to the number of ele-
ments in the list.
At what level do we start a search? Defining L(n)
In a skip list of 16 elements generated with p = 1/2, we might
happen to have 9 elements of level 1, 3 elements of level 2, 3
elements of level 3 and 1 element of level 14 (this would be
very unlikely, but it could happen). How should we handle
this? If we use the standard algorithm and start our search at
level 14, we will do a lot of useless work.

Where should we start the search? Our analysis suggests
that ideally we would start a search at the level L where we
expect 1/p nodes. This happens when L = log1/p n. Since we
will be referring frequently to this formula, we will use L(n)
to denote log1/p n.

There are a number of solutions to the problem of deciding
how to handle the case where there is an element with an
unusually large level in the list.
• Don’t worry, be happy. Simply start a search at the highest

level present in the list. As we will see in our analysis, the
probability that the maximum level in a list of n elements is
significantly larger than L(n) is very small. Starting a
search at the maximum level in the list does not add more
than a small constant to the expected search time. This is
the approach used in the algorithms described in this paper.

Insert(list, searchKey, newValue)
local update[1..MaxLevel]
x := list→header
for i := list→level downto 1 do

while x→forward[i]→key < searchKey do
x := x→forward[i]

-- x→key < searchKey ≤ x→forward[i]→key
update[i] := x

x := x→forward[1]
if x→key = searchKey then x→value := newValue
else

lvl := randomLevel()
if lvl > list→level then

for i := list→level + 1 to lvl do
update[i] := list→header

list→level := lvl
x := makeNode(lvl, searchKey, value)
for i := 1 to level do

x→forward[i] := update[i]→forward[i]
update[i]→forward[i] := x

Delete(list, searchKey)
local update[1..MaxLevel]
x := list→header
for i := list→level downto 1 do

while x→forward[i]→key < searchKey do
x := x→forward[i]

update[i] := x
x := x→forward[1]
if x→key = searchKey then

for i := 1 to list→level do
if update[i]→forward[i] ≠ x then break
update[i]→forward[i] := x→forward[i]

free(x)
while list→level > 1 and

list→header→forward[list→level] = NIL do
list→level := list→level – 1

FIGURE 4 - Skip List insertion and deletion algorithms

randomLevel()
lvl := 1
-- random() that returns a random value in [0...1)
while random() < p and lvl < MaxLevel do

lvl := lvl + 1
return lvl

FIGURE 5 - Algorithm to calculate a random level

Search path update[i]→forward[i]

original list, 17 to be inserted

list after insertion, updated pointers in grey

3

6

7
9

12 19 21
25

26

3

6

7
9

12 19 21
25

26
17

NIL

NIL

FIGURE 3 - Pictorial description of steps involved in performing an insertion

• Use less than you are given. Although an element may con-
tain room for 14 pointers, we don’t need to use all 14. We
can choose to utilize only L(n) levels. There are a number
of ways to implement this, but they all complicate the algo-
rithms and do not noticeably improve performance, so this
approach is not recommended.

• Fix the dice. If we generate a random level that is more than
one greater than the current maximum level in the list, we
simply use one plus the current maximum level in the list as
the level of the new node. In practice and intuitively, this
change seems to work well. However, it totally destroys our
ability to analyze the resulting algorithms, since the level of
a node is no longer completely random. Programmers
should probably feel free to implement this, purists should
avoid it.

Determining MaxLevel
Since we can safely cap levels at L(n), we should choose
MaxLevel = L(N) (where N is an upper bound on the number
of elements in a skip list). If p = 1/2, using MaxLevel = 16 is
appropriate for data structures containing up to 216 elements.

ANALYSIS OF SKIP LIST ALGORITHMS
The time required to execute the Search, Delete and Insert
operations is dominated by the time required to search for the
appropriate element. For the Insert and Delete operations,
there is an additional cost proportional to the level of the node
being inserted or deleted. The time required to find an element
is proportional to the length of the search path, which is de-
termined by the pattern in which elements with different
levels appear as we traverse the list.
Probabilistic Philosophy
The structure of a skip list is determined only by the number

elements in the skip list and the results of consulting the ran-
dom number generator. The sequence of operations that pro-
duced the current skip list does not matter. We assume an ad-
versarial user does not have access to the levels of nodes;
otherwise, he could create situations with worst-case running
times by deleting all nodes that were not level 1.

The probabilities of poor running times for successive op-
erations on the same data structure are NOT independent; two
successive searches for the same element will both take ex-
actly the same time. More will be said about this later.
Analysis of expected search cost
We analyze the search path backwards, travelling up and to
the left. Although the levels of nodes in the list are known and
fixed when the search is performed, we act as if the level of a
node is being determined only when it is observed while
backtracking the search path.

?
x

Need to climb k
levels from here

situation a

? ?
x

x

Need to climb
only k-1 levels
from here

Still need to climb k
levels from here

situation c
situation b

probability = 1-p probability = p

FIGURE 6 - Possible situations in backwards traversal of the search path

At any particular point in the climb, we are at a situation
similar to situation a in Figure 6 – we are at the ith forward
pointer of a node x and we have no knowledge about the
levels of nodes to the left of x or about the level of x, other
than that the level of x must be at least i. Assume the x is not
the header (the is equivalent to assuming the list extends in-
finitely to the left). If the level of x is equal to i, then we are in
situation b. If the level of x is greater than i, then we are in
situation c. The probability that we are in situation c is p. Each
time we are in situation c, we climb up a level. Let C(k) = the
expected cost (i.e, length) of a search path that climbs up k
levels in an infinite list:

C(0) = 0
C(k) = (1–p) (cost in situation b) + p (cost in situation c)

By substituting and simplifying, we get:

C(k) = (1–p) (1 + C(k)) + p (1 + C(k–1))
C(k) = 1/p + C(k–1)
C(k) = k/p

Our assumption that the list is infinite is a pessimistic as-
sumption. When we bump into the header in our backwards
climb, we simply climb up it, without performing any left-
ward movements. This gives us an upper bound of (L(n)–1)/p
on the expected length of the path that climbs from level 1 to
level L(n) in a list of n elements.

We use this analysis go up to level L(n) and use a different
analysis technique for the rest of the journey. The number of
leftward movements remaining is bounded by the number of
elements of level L(n) or higher in the entire list, which has an
expected value of 1/p.

We also move upwards from level L(n) to the maximum
level in the list. The probability that the maximum level of the
list is a greater than k is equal to 1–(1–pk)n, which is at most
npk. We can calculate the expected maximum level is at most
L(n) + 1/(1–p). Putting our results together, we find

Total expected cost to climb out of a list of n elements
≤ L(n)/p + 1/(1–p)

which is O(log n).
Number of comparisons
Our result is an analysis of the “length” of the search path.
The number of comparisons required is one plus the length of
the search path (a comparison is performed for each position
in the search path, the “length” of the search path is the num-
ber of hops between positions in the search path).
Probabilistic Analysis
It is also possible to analyze the probability distribution of
search costs. The probabilistic analysis is somewhat more
complicated (see box). From the probabilistic analysis, we can
calculate an upper bound on the probability that the actual cost
of a search exceeds the expected cost by more than a specified
ratio. Some results of this analysis are shown in Figure 8.
Choosing p
Table 1 gives the relative times and space requirements for
different values of p. Decreasing p also increases the variabil-

ity of running times. If 1/p is a power of 2, it will be easy to
generate a random level from a stream of random bits (it re-
quires an average of (log2 1/p)/(1–p) random bits to generate a
random level). Since some of the constant overheads are re-
lated to L(n) (rather than L(n)/p), choosing p = 1/4 (rather than
1/2) slightly improves the constant factors of the speed of the
algorithms as well. I suggest that a value of 1/4 be used for p
unless the variability of running times is a primary concern, in
which case p should be 1/2.
Sequences of operations
The expected total time for a sequence of operations is equal
to the sum of the expected times of each of the operations in
the sequence. Thus, the expected time for any sequence of m
searches in a data structure that contains n elements is O(m
log n). However, the pattern of searches affects the probability
distribution of the actual time to perform the entire sequence
of operations.

1.0 2.0 3.0
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

p = 1/4, n = 256
p = 1/4, n = 4,096
p = 1/4, n = 65,536
p = 1/2, n = 256
p = 1/2, n = 4,096
p = 1/2, n = 65,536

Prob.

Ratio of actual cost to expected cost

FIGURE 8 - This graph shows a plot of an upper bound on the probability of a search taking substantially longer than expected.
The vertical axis show the probability that the length of the search path for a search exceeds the average length by more than the
ratio on the horizontal axis. For example, for p = 1/2 and n = 4096, the probability that the search path will be more than three

times the expected length is less than one in 200 million. This graph was calculated using our probabilistic upper bound.

Normalized search Avg. # of pointers
p times (i.e., normalized per node

L(n)/p) (i.e., 1/(1 – p))

1/2 1 2
1/e 0.94... 1.58...
1/4 1 1.33...
1/8 1.33... 1.14...
1/16 2 1.07...

TABLE 1 – Relative search speed and space requirements,
depending on the value of p.

If we search for the same item twice in the same data
structure, both searches will take exactly the same amount of
time. Thus the variance of the total time will be four times the
variance of a single search. If the search times for two ele-
ments are independent, the variance of the total time is equal
to the sum of the variances of the individual searches.
Searching for the same element over and over again maxi-
mizes the variance.

ALTERNATIVE DATA STRUCTURES
Balanced trees (e.g., AVL trees [Knu73] [Wir76]) and self-
adjusting trees [ST85] can be used for the same problems as
skip lists. All three techniques have performance bounds of
the same order. A choice among these schemes involves sev-
eral factors: the difficulty of implementing the algorithms,
constant factors, type of bound (amortized, probabilistic or
worst-case) and performance on a non-uniform distribution of
queries.
Implementation difficulty
For most applications, implementers generally agree skip lists
are significantly easier to implement than either balanced tree
algorithms or self-adjusting tree algorithms.

Constant factors
Constant factors can make a significant difference in the
practical application of an algorithm. This is particularly true
for sub-linear algorithms. For example, assume that algo-
rithms A and B both require O(log n) time to process a query,
but that B is twice as fast as A: in the time algorithm A takes to
process a query on a data set of size n, algorithm B can pro-
cess a query on a data set of size n2.

There are two important but qualitatively different contri-
butions to the constant factors of an algorithm. First, the in-
herent complexity of the algorithm places a lower bound on
any implementation. Self-adjusting trees are continuously re-
arranged as searches are performed; this imposes a significant
overhead on any implementation of self-adjusting trees. Skip
list algorithms seem to have very low inherent constant-factor
overheads: the inner loop of the deletion algorithm for skip
lists compiles to just six instructions on the 68020.

Second, if the algorithm is complex, programmers are de-
terred from implementing optimizations. For example, bal-
anced tree algorithms are normally described using recursive
insert and delete procedures, since that is the most simple and
intuitive method of describing the algorithms. A recursive in-
sert or delete procedure incurs a procedure call overhead. By
using non-recursive insert and delete procedures, some of this
overhead can be eliminated. However, the complexity of non-
recursive algorithms for insertion and deletion in a balanced
tree is intimidating and this complexity deters most program-
mers from eliminating recursion in these routines. Skip list al-

Implementation Search Time Insertion Time Deletion Time
Skip lists 0.051 msec (1.0) 0.065 msec (1.0) 0.059 msec (1.0)

non-recursive AVL trees 0.046 msec (0.91) 0.10 msec (1.55) 0.085 msec (1.46)
recursive 2–3 trees 0.054 msec (1.05) 0.21 msec (3.2) 0.21 msec (3.65)

Self–adjusting trees:
top-down splaying 0.15 msec (3.0) 0.16 msec (2.5) 0.18 msec (3.1)

bottom-up splaying 0.49 msec (9.6) 0.51 msec (7.8) 0.53 msec (9.0)

Table 2 - Timings of implementations of different algorithms

gorithms are already non-recursive and they are simple
enough that programmers are not deterred from performing
optimizations.

Table 2 compares the performance of implementations of
skip lists and four other techniques. All implementations were
optimized for efficiency. The AVL tree algorithms were writ-
ten by James Macropol of Contel and based on those in
[Wir76]. The 2–3 tree algorithms are based on those presented
in [AHU83]. Several other existing balanced tree packages
were timed and found to be much slower than the results pre-
sented below. The self-adjusting tree algorithms are based on
those presented in [ST85]. The times in this table reflect the
CPU time on a Sun-3/60 to perform an operation in a data
structure containing 216 elements with integer keys. The val-
ues in parenthesis show the results relative to the skip list time
The times for insertion and deletion do not include the time
for memory management (e.g, in C programs, calls to malloc
and free).

Note that skip lists perform more comparisons than other
methods (the skip list algorithms presented here require an
average of L(n)/p + 1/(1–p) + 1 comparisons). For tests using
real numbers as keys, skip lists were slightly slower than the
non-recursive AVL tree algorithms and search in a skip list
was slightly slower than search in a 2–3 tree (insertion and
deletion using the skip list algorithms was still faster than us-
ing the recursive 2–3 tree algorithms). If comparisons are very
expensive, it is possible to change the algorithms so that we
never compare the search key against the key of a node more
than once during a search. For p = 1/2, this produces an upper
bound on the expected number of comparisons of 7/2 +
3/2 log2 n. This modification is discussed in [Pug89b].
Type of performance bound
These three classes of algorithm have different kinds of per-
formance bounds. Balanced trees have worst-case time
bounds, self-adjusting trees have amortized time bounds and
skip lists have probabilistic time bounds. With self-adjusting
trees, an individual operation can take O(n) time, but the time
bound always holds over a long sequence of operations. For
skip lists, any operation or sequence of operations can take
longer than expected, although the probability of any opera-
tion taking significantly longer than expected is negligible.

In certain real-time applications, we must be assured that
an operation will complete within a certain time bound. For
such applications, self-adjusting trees may be undesirable,
since they can take significantly longer on an individual oper-
ation than expected (e.g., an individual search can take O(n)
time instead of O(log n) time). For real-time systems, skip
lists may be usable if an adequate safety margin is provided:
the chance that a search in a skip lists containing 1000 ele-

ments takes more than 5 times the expected time is about 1 in
1018.
Non-uniform query distribution
Self-adjusting trees have the property that they adjust to non-
uniform query distributions. Since skip lists are faster than
self-adjusting trees by a significant constant factor when a
uniform query distribution is encountered, self-adjusting trees
are faster than skip lists only for highly skewed distributions.
We could attempt to devise self-adjusting skip lists. However,
there seems little practical motivation to tamper with the sim-
plicity and fast performance of skip lists; in an application
where highly skewed distributions are expected, either self-
adjusting trees or a skip list augmented by a cache may be
preferable [Pug90].

ADDITIONAL WORK ON SKIP LISTS
 I have described a set of algorithms that allow multiple pro-
cessors to concurrently update a skip list in shared memory
[Pug89a]. This algorithms are much simpler than concurrent
balanced tree algorithms. They allow an unlimited number of
readers and n busy writers in a skip list of n elements with
very little lock contention.

Using skip lists, it is easy to do most (all?) the sorts of op-
erations you might wish to do with a balanced tree such as use
search fingers, merge skip lists and allow ranking operations
(e.g., determine the kth element of a skip list) [Pug89b].

Tom Papadakis, Ian Munro and Patricio Poblette [PMP90]
have done an exact analysis of the expected search time in a
skip list. The upper bound described in this paper is close to
their exact bound; the techniques they needed to use to derive
an exact analysis are very complicated and sophisticated.
Their exact analysis shows that for p = 1/2 and p = 1/4, the
upper bound given in this paper on the expected cost of a
search is not more than 2 comparisons more than the exact
expected cost.

I have adapted idea of probabilistic balancing to some
other problems arising both in data structures and in incre-
mental computation [PT88]. We can generate the level of a
node based on the result of applying a hash function to the
element (as opposed to using a random number generator).
This results in a scheme where for any set S, there is a unique
data structure that represents S and with high probability the
data structure is approximately balanced. If we combine this
idea with an applicative (i.e., persistent) probabilistically bal-
anced data structure and a scheme such as hashed-consing
[All78] which allows constant-time structural equality tests of
applicative data structures, we get a number of interesting
properties, such as constant-time equality tests for the repre-
sentations of sequences. This scheme also has a number of
applications for incremental computation. Since skip lists are

somewhat awkward to make applicative, a probabilistically
balanced tree scheme is used.

RELATED WORK
James Discroll pointed out that R. Sprugnoli suggested a
method of randomly balancing search trees in 1981 [Spr81].
With Sprugnoli’s approach, the state of the data structure is
not independent of the sequence of operations which built it.
This makes it much harder or impossible to formally analyze
his algorithms. Sprugnoli gives empirical evidence that his al-
gorithm has good expected performance, but no theoretical re-
sults.

A randomized data structure for ordered sets is described
in [BLLSS86]. However, a search using that data structure re-
quires O(n1/2) expected time.

Cecilia Aragon and Raimund Seidel describe a probabilis-
tically balanced search trees scheme [AC89]. They discuss
how to adapt their data structure to non-uniform query distri-
butions.

SOURCE CODE AVAILABILITY
Skip list source code libraries for both C and Pascal are avail-
able for anonymous ftp from ftp.cs.umd.edu.

CONCLUSIONS
From a theoretical point of view, there is no need for skip
lists. Balanced trees can do everything that can be done with
skip lists and have good worst-case time bounds (unlike skip
lists). However, implementing balanced trees is an exacting
task and as a result balanced tree algorithms are rarely imple-
mented except as part of a programming assignment in a data
structures class.

Skip lists are a simple data structure that can be used in
place of balanced trees for most applications. Skip lists algo-
rithms are very easy to implement, extend and modify. Skip
lists are about as fast as highly optimized balanced tree algo-
rithms and are substantially faster than casually implemented
balanced tree algorithms.

ACKNOWLEDGEMENTS
Thanks to the referees for their helpful comments. Special
thanks to all those people who supplied enthusiasm and en-
couragement during the years in which I struggled to get this
work published, especially Alan Demers, Tim Teitelbaum and
Doug McIlroy. This work was partially supported by an
AT&T Bell Labs Fellowship and by NSF grant CCR–
8908900.

REFERENCES
[AC89] Aragon, Cecilia and Raimund Seidel, Randomized

Search Trees, Proceedings of the 30th Ann. IEEE Symp
on Foundations of Computer Science, pp 540–545,
October 1989.

[AHU83] Aho, A., Hopcroft, J. and Ullman, J. Data Structures
and Algorithms, Addison-Wesley Publishing Company,
1983.

[All78] John Allen. Anatomy of LISP, McGraw Hill Book
Company, NY, 1978.

[BLLSS86] Bentley, J., F. T. Leighton, M.F. Lepley, D. Stanat and
J. M. Steele, A Randomized Data Structure For
Ordered Sets, MIT/LCS Technical Memo 297, May
1986.

[Knu73] Knuth, D. “Sorting and Searching,” The Art of
Computer Programming, Vol. 3, Addison-Wesley
Publishing Company, 1973.

[PMP90] Papadakis, Thomas, Ian Munro and Patricio Poblette,
Exact Analysis of Expected Search Cost in Skip Lists,
Tech Report # ????, Dept. of Computer Science, Univ.
of Waterloo, January 1990.

[PT89] Pugh, W. and T. Teitelbaum, “Incremental Computation
via Function Caching,” Proc. of the Sixteenth
conference on the Principles of Programming
Languages, 1989.

[Pug89a] Pugh, W., Concurrent Maintenance of Skip Lists, Tech
Report TR-CS-2222, Dept. of Computer Science,
University of Maryland, College Park, 1989.

[Pug89b] Pugh, W., Whatever you might want to do using
Balanced Trees, you can do it faster and more simply
using Skip Lists, Tech Report CS–TR–2286, Dept. of
Computer Science, University of Maryland, College
Park, July 1989.

[Pug90] Pugh, W. Slow Optimally Balanced Search Strategies
vs. Cached Fast Uniformly Balanced Search Strategies,
to appear in Information Processing Letters.

[Spr81] Sprugnoli, R. Randomly Balanced Binary Trees,
Calcolo, V17 (1981), pp 99-117.

[ST85] Sleator, D. and R. Tarjan “Self-Adjusting Binary Search
Trees,” Journal of the ACM, Vol 32, No. 3, July 1985,
pp. 652-666.

[Wir76] Wirth, N. Algorithms + Data Structures = Programs,
Prentice-Hall, 1976.

PROBABILISTIC ANALYSIS
In addition to analyzing the expected performance of skip
lists, we can also analyze the probabilistic performance of skip
lists. This will allow us to calculate the probability that an
operation takes longer than a specified time. This analysis is
based on the same ideas as our analysis of the expected cost,
so that analysis should be understood first.

A random variable has a fixed but unpredictable value and
a predictable probability distribution and average. If X is a
random variable, Prob{ X = t } denotes the probability that X
equals t and Prob{ X > t } denotes the probability that X is
greater than t. For example, if X is the number obtained by
throwing a unbiased die, Prob{ X > 3 } = 1/2.

It is often preferable to find simple upper bounds on values
whose exact value is difficult to calculate. To discuss upper
bounds on random variables, we need to define a partial or-
dering and equality on the probability distributions of non-
negative random variables.
Definitions (=prob and ≤prob). Let X and Y be non-negative
independent random variables (typically, X and Y would
denote the time to execute algorithms AX and AY). We define
X ≤prob Y to be true if and only if for any value t, the
probability that X exceeds t is less than the probability that Y
exceeds t. More formally:

X =prob Y iff ∀ t, Prob{ X > t } = Prob{ Y > t } and

X ≤prob Y iff ∀ t, Prob{ X > t } ≤ Prob{ Y > t }. ■

For example, the graph in Figure 7shows the probability
distribution of three random variables X, Y and Z. Since the
probability distribution curve for X is completely under the
curves for Y and Z, X ≤prob Y and X ≤prob Z. Since the
probability curves for Y and Z intersect, neither Y ≤prob Z nor
Z ≤prob Y. Since the expected value of a random variable X is
simply the area under the curve Prob{ X > t }, if X ≤prob Y
then the average of X is less than or equal to the average of Y.

0

1

t

Prob{ X > t }
Prob{ Y > t }
Prob{ Z > t }

Prob

FIGURE 7 – Plots of three probability distributions

We make use of two probability distributions:
Definition (binomial distributions — B(t, p)). Let t be a
non-negative integer and p be a probability. The term B(t, p)
denotes a random variable equal to the number of successes
seen in a series of t independent random trials where the
probability of a success in a trial is p. The average and
variance of B(t, p) are tp and tp(1 – p) respectively. ■
Definition (negative binomial distributions — NB(s, p)). Let s
be a non-negative integer and p be a probability. The term
NB(s, p) denotes a random variable equal to the number of
failures seen before the sth success in a series of random
independent trials where the probability of a success in a trial
is p. The average and variance of NB(s, p) are s(1–p)/p and
s(1–p)/p2 respectively. ■

Probabilistic analysis of search cost
The number of leftward movements we need to make before
we move up a level (in an infinite list) has a negative binomial
distribution: it is the number of failures (situations b’s) we see
before we see the first success (situation c) in a series of
independent random trials, where the probability of success is
p. Using the probabilistic notation introduced above:

Cost to climb one level in an infinite list
=prob 1+ NB(1, p).

We can sum the costs of climbing each level to get the
total cost to climb up to level L(n):

Cost to climb to level L(n) in an infinite list
=prob (L(n) – 1) + NB(L(n) – 1, p).

Our assumption that the list is infinite is a pessimistic
assumption:

Cost to climb to level L(n) in a list of n elements
≤prob (L(n) – 1) + NB(L(n) – 1, p).

Once we have climbed to level L(n), the number of
leftward movements is bounded by the number of elements of
level L(n) or greater in a list of n elements. The number of
elements of level L(n) or greater in a list of n elements is a
random variable of the form B(n, 1/np).

Let M be a random variable corresponding to the
maximum level in a list of n elements. The probability that the
level of a node is greater than k is pk, so Prob{ M > k } = 1–
(1–pk)n < npk. Since npk = pk–L(n) and Prob{ NB(1, 1–p) + 1 >
i} = pi, we get an probabilistic upper bound of M ≤prob L(n) +
NB(1, 1 – p) + 1. Note that the average of L(n) + NB(1, 1 – p)
+ 1 is L(n) + 1/(1–p).

This gives a probabilistic upper bound on the cost once we
have reached level L(n) of B(n, 1/np) + (L(n) + NB(1, 1 – p) +
1) – L(n). Combining our results to get a probabilistic upper
bound on the total length of the search path (i.e., cost of the
entire search):

total cost to climb out of a list of n elements
≤prob (L(n) – 1) + NB(L(n) – 1, p) + B(n, 1/np)

+ NB(1, 1 – p) + 1

The expected value of our upper bound is equal to

(L(n) – 1) + (L(n) – 1)(1 – p)/p + 1/p + p/(1–p) + 1
= L(n)/p + 1/(1–p),

which is the same as our previously calculated upper bound
on the expected cost of a search. The variance of our upper
bound is

(L(n) – 1)(1–p)/p2 + (1 – 1/np)/p + p/(1–p)2

< (1–p)L(n)/p2 + p/(1–p)2 + (2p–1)/p2.

Figure 8 show a plot of an upper bound on the probability
of an actual search taking substantially longer than average,
based on our probabilistic upper bound.

